RE: [eigen] SVD with singular matrices

[ Thread Index | Date Index | More lists.tuxfamily.org/eigen Archives ]


Knowing there is a major problem with the current SVD, I think it shouldn't be available in the API until the problem is resolved. So both options are valid and the choice mainly relies on that question: in the long term, do you want to maintain 2 SVD algorithms ? 

Philippe

-----Message d'origine-----
De : Listengine [mailto:listengine@xxxxxxxxxxxxxxxxx] De la part de Benoit Jacob
Envoyé : 30 septembre 2010 07:27
À : eigen@xxxxxxxxxxxxxxxxxxx
Objet : Re: [eigen] SVD with singular matrices

2010/9/30 Benoit Jacob <jacob.benoit.1@xxxxxxxxx>:
> 2010/9/29 Keir Mierle <mierle@xxxxxxxxx>:
>> On Wed, Sep 29, 2010 at 8:10 AM, Benoit Jacob <jacob.benoit.1@xxxxxxxxx>
>> wrote:
>>>
>>> Here's a diff for the SVD unit test, exposing the problem.
>>>
>>> The sorting of eigenvalues isn't the problem, the bidiagonalization is.
>>>
>>> The most productive thing I can say is: let's declare SVD
>>> not-for-exactly-singular-matrices for now, and ... yeah , yeah, make
>>> the new SVD happen :-P .. in the meanwhile you have JacobiSVD.
>>>
>>
>> This is a serious problem. Almost all multiview geometry hackers regularly
>> solve matrices that are exactly singular (i.e. start out as 3x5, get
>> extended with two rows of zeros to be 5x5). This is because many problems in
>> multiview geometry produce homogenous linear equations. I use the SVD now in
>> libmv and it seems to work, but now I'm worried.
>
> I know, that's why in my next e-mail I proposed that we temporarily
> internally replace the SVD implementation by JacobiSVD. That will turn
> it into the most reliable SVD ever, the downside being that for large
> matrices it's relatively slow (IIRC twice slower than the current SVD)
> (but for small matrices such as yours, it's fast, so you should be
> using JacobiSVD anyway).

Actually I am now pretty convinced that we should do this, the
question I'm really wondering about is the following. Right now I'm
making API changes making JacobiSVD be a drop-in replacement for SVD.
So:
 - 1) should we just plain remove SVD and tell people to use JacobiSVD
 - 2) or should we, as said above, just internally reimplement SVD on
top of JacobiSVD ?

I'm getting more and more in favor of 1). Like in other modules, use
explicit decomposition names. My concern is that with 2), in Eigen 3.1
we'd silently replace SVD by a faster but NOT AS RELIABLE
implementation. Dangerous!

Benoit

>
> Benoit
>
>
>> Keir
>>
>>>
>>> Benoit
>>>
>>> 2010/9/29 Benoit Jacob <jacob.benoit.1@xxxxxxxxx>:
>>> > OK, i've attached a compilable variant that also prints the
>>> > reconstructed matrix.
>>> >
>>> > It turns out that the reconstructed matrix is
>>> >  1 0
>>> >  1 0
>>> >
>>> > I.e. we seem to have a problem with row/column permutations. Which
>>> > could be related to the sorting of singvals.
>>> >
>>> > I'm trying to understand why our unit test is not catching this. It's
>>> > true that we're not testing matrices with exactly 0 singvals.
>>> >
>>> > Benoit
>>> >
>>> > 2010/9/29  <hamelin.philippe@xxxxxxx>:
>>> >> This simple test fails:
>>> >>
>>> >> bool testSingularMatrixSVD()
>>> >> {
>>> >>    MatrixXd a(2,2), avalidation(2,2);
>>> >>    unsigned int rows = 2;
>>> >>    unsigned int cols = 2;
>>> >>
>>> >>    a <<    1,     1,
>>> >>            0,     0;
>>> >>
>>> >>    Eigen::SVD<MatrixXd> svd(a);
>>> >>    MatrixXd sigma = MatrixXd::Zero(rows,cols);
>>> >>    MatrixXd matU  = MatrixXd::Zero(rows,rows);
>>> >>    sigma.diagonal() = svd.singularValues();
>>> >>    matU = svd.matrixU();
>>> >>    avalidation = matU * sigma * svd.matrixV().transpose();
>>> >>
>>> >>    cout << "testSingularMatrixSVD() : ";
>>> >>    if((a).isApprox(avalidation, 1e-12))
>>> >>    {
>>> >>        cout << "Success." << endl;
>>> >>        return true;
>>> >>    }
>>> >>    else
>>> >>    {
>>> >>        cout << "Fail." << endl;
>>> >>        return false;
>>> >>    }
>>> >>
>>> >> }
>>> >>
>>> >>
>>> >> -----Message d'origine-----
>>> >> De : Listengine [mailto:listengine@xxxxxxxxxxxxxxxxx] De la part de
>>> >> Benoit Jacob
>>> >> Envoyé : 29 septembre 2010 10:32
>>> >> À : eigen@xxxxxxxxxxxxxxxxxxx
>>> >> Objet : Re: [eigen] SVD with singular matrices
>>> >>
>>> >> 2010/9/29  <hamelin.philippe@xxxxxxx>:
>>> >>> Hello,
>>> >>>
>>> >>> when updating from eigen2 to eigen3, I found that my pseudo-inverse
>>> >>> was not
>>> >>> working correctly for singular matrices. However, just replacing SVD
>>> >>> with
>>> >>> JacobiSVD makes it work. Before looking further, is there any
>>> >>> limitation
>>> >>> with SVD with singular matrices such as:
>>> >>>
>>> >>> [1 1;0 0]
>>> >>
>>> >> JacobiSVD always works, and is always precise. But it's slow for large
>>> >> matrices.
>>> >>
>>> >> SVD uses the Golub-Kahan bidiagonalization approach. So it's faster,
>>> >> but potentially inaccurate for certain singular matrices.
>>> >>
>>> >> I would be surprised though if the above 2x2 matrix was enough to
>>> >> expose problems in it. That would be a bug. Can you make a compilable
>>> >> test case?
>>> >>
>>> >> Thanks,
>>> >> Benoit
>>> >>
>>> >>>
>>> >>> Thank you,
>>> >>>
>>> >>> ------------------------------------
>>> >>> Philippe Hamelin, ing. jr, M. Ing
>>> >>> Chercheur / Researcher
>>> >>>
>>> >>> T: 450-652-8499 x2198
>>> >>> F: 450-652-1316
>>> >>>
>>> >>> Expertise robotique et civil
>>> >>> Institut de recherche d'Hydro-Québec (IREQ)
>>> >>> 1740, boul. Lionel-Boulet
>>> >>> Varennes (QC) J3X 1S1, Canada
>>> >>>
>>> >>
>>> >>
>>> >>
>>> >>
>>> >>
>>> >
>>
>>
>





Mail converted by MHonArc 2.6.19+ http://listengine.tuxfamily.org/