Re: [eigen] Mapping array of scalars into quaternions |
[ Thread Index |
Date Index
| More lists.tuxfamily.org/eigen Archives
]
- To: eigen@xxxxxxxxxxxxxxxxxxx
- Subject: Re: [eigen] Mapping array of scalars into quaternions
- From: Benoit Jacob <jacob.benoit.1@xxxxxxxxx>
- Date: Tue, 27 Oct 2009 15:55:48 -0400
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:mime-version:received:in-reply-to:references :date:message-id:subject:from:to:content-type :content-transfer-encoding; bh=gfzsX8ejLga6aI7fJkVBiZqIQB0lvqyxAdbsrXlSSK8=; b=vgTrRjjvy9oy4f7Rop+qu7t/TJ9YGtwEJD6j4H5KmY2/mGZpzQ3i7hV2mG0Kc4gCnI rSWXsz3Xh+DfsSnxoNnVWRXGJ+MUHoi/imTBJKp0ZawlV+7GzLJl00NYXv0Ibzjh7qQE JwFS/9H2c6iQcckD4C6odhPgXKE419/5FaHJQ=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :content-type:content-transfer-encoding; b=nI5FtL2PVMFrNiyRn7QutR5sYHmWRDR5NVNGvtwA3Aw1KQIEMOJamkmFRqtomiMGLF hgaUkAMzkhV0N+d5a4vYdOP4F8GmGwM5ay7tLrh256fWuPcehe5eorOrKZJmj0yCJD4t kfOxC+fVXYfiU496YjBE6X0r8AUyvhMYZSag0=
it just occured to me that you probably tested GCC and didnt get the
errors, the reason why I got them is that I renamed Quat to Quaternion
so that the unit test would test it, that's why i discovered these
errors.
Benoit
2009/10/27 Benoit Jacob <jacob.benoit.1@xxxxxxxxx>:
> Hi,
>
> Thanks a lot. I just pushed your changeset, followed by another
> changeset to make things work here with GCC. I replaced the existing
> Quaternion class by your Quat (so there's no Quat anymore) and got it
> to the point that the unit-tests succeed. I didn't look very closely
> if there were more things to do.
>
> Here's the commit msg of my changeset:
>
> * rename new Quat class to Quaternion, remove existing Quaternion
> * add Copyright line for Mathieu
> * cast() was broken (compile errors) and needed anyway to be in QuaternionBase
> * it's VectorBlock<T,3>, don't pass additional parameter 1, it has
> different meaning!!
> * make it compile with GCC (put 'typename' at the right location)
>
> In the future, in order to test compilation yourself, you just need to do:
> mkdir build
> cd build
> cmake ../eigen2
> make test_geo_quaternion
>
> What's needed next:
> * update documentation
> * extend unit tests to cover Map<Quaternion>, no need to redo all the
> arithmetic there but focus on the mapping of existing memory, test
> both aligned and not aligned, etc... see doc here:
> http://eigen.tuxfamily.org/index.php?title=Developer%27s_Corner#Writing_unit_tests
>
> Thanks,
> Benoit
>
> 2009/10/27 Mathieu Gautier <mathieu.gautier@xxxxxx>:
>>> So instead of QuaternionWrapper, what about using a specialization of Map
>>> for Quaternion:
>>
>> This version of the patch used Map<Quaternion<_Scalar> > instead of
>> QuaternionWrapper. It's work with the last revision (1750).
>>
>> I had to replace the ei_quaternion_product function by a struct with a
>> static function to allow partial specialization to use the vectorized
>> multiplication between quaternion and mapped quaternion. It's possible that
>> I had used to much template arguments.
>>
>> --
>> Mathieu Gautier
>>
>> # HG changeset patch
>> # User Mathieu Gautier <mathieu.gautier@xxxxxx>
>> # Date 1256649556 0
>> # Node ID 8eae2834af38b30e009ed88ee12cbe63f4adab0a
>> # Parent b065d97337165b7a9d7282b01aed52d4c47cc39a
>> Quaternion could now map an array of 4 scalars :
>>
>> new classes :
>> * QuaternionBase
>> * Map<Quaternion>
>>
>> diff -r b065d9733716 -r 8eae2834af38
>> Eigen/src/Core/util/ForwardDeclarations.h
>> --- a/Eigen/src/Core/util/ForwardDeclarations.h Sat Oct 24 14:48:34 2009
>> +0200
>> +++ b/Eigen/src/Core/util/ForwardDeclarations.h Tue Oct 27 13:19:16 2009
>> +0000
>> @@ -129,6 +129,7 @@
>> // Geometry module:
>> template<typename Derived, int _Dim> class RotationBase;
>> template<typename Lhs, typename Rhs> class Cross;
>> +template<typename Derived> class QuaternionBase;
>> template<typename Scalar> class Quaternion;
>> template<typename Scalar> class Rotation2D;
>> template<typename Scalar> class AngleAxis;
>> diff -r b065d9733716 -r 8eae2834af38 Eigen/src/Geometry/Quaternion.h
>> --- a/Eigen/src/Geometry/Quaternion.h Sat Oct 24 14:48:34 2009 +0200
>> +++ b/Eigen/src/Geometry/Quaternion.h Tue Oct 27 13:19:16 2009 +0000
>> @@ -507,4 +507,549 @@
>> }
>> };
>>
>> +/*###################################################################
>> + QuaternionBase and Map<Quaternion> and Quat
>> + ###################################################################*/
>> +
>> +template<typename Other,
>> + int OtherRows=Other::RowsAtCompileTime,
>> + int OtherCols=Other::ColsAtCompileTime>
>> +struct ei_quaternionbase_assign_impl;
>> +
>> +template<typename Scalar> class Quat; // [XXX] => remove when Quat becomes
>> Quaternion
>> +
>> +template<typename Derived>
>> +struct ei_traits<QuaternionBase<Derived> >
>> +{
>> + typedef typename ei_traits<Derived>::Scalar Scalar;
>> + enum {
>> + PacketAccess = ei_traits<Derived>::PacketAccess
>> + };
>> +};
>> +
>> +template<class Derived>
>> +class QuaternionBase : public RotationBase<Derived, 3> {
>> + typedef RotationBase<Derived, 3> Base;
>> +public:
>> + using Base::operator*;
>> +
>> + typedef typename ei_traits<QuaternionBase<Derived> >::Scalar Scalar;
>> + typedef typename NumTraits<Scalar>::Real RealScalar;
>> +
>> + // typedef typename Matrix<Scalar,4,1> Coefficients;
>> + /** the type of a 3D vector */
>> + typedef Matrix<Scalar,3,1> Vector3;
>> + /** the equivalent rotation matrix type */
>> + typedef Matrix<Scalar,3,3> Matrix3;
>> + /** the equivalent angle-axis type */
>> + typedef AngleAxis<Scalar> AngleAxisType;
>> +
>> + /** \returns the \c x coefficient */
>> + inline Scalar x() const { return this->derived().coeffs().coeff(0); }
>> + /** \returns the \c y coefficient */
>> + inline Scalar y() const { return this->derived().coeffs().coeff(1); }
>> + /** \returns the \c z coefficient */
>> + inline Scalar z() const { return this->derived().coeffs().coeff(2); }
>> + /** \returns the \c w coefficient */
>> + inline Scalar w() const { return this->derived().coeffs().coeff(3); }
>> +
>> + /** \returns a reference to the \c x coefficient */
>> + inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
>> + /** \returns a reference to the \c y coefficient */
>> + inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
>> + /** \returns a reference to the \c z coefficient */
>> + inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
>> + /** \returns a reference to the \c w coefficient */
>> + inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
>> +
>> + /** \returns a read-only vector expression of the imaginary part (x,y,z)
>> */
>> + inline const VectorBlock<typename ei_traits<Derived>::Coefficients,3,1>
>> vec() const { return this->derived().coeffs().template start<3>(); }
>> +
>> + /** \returns a vector expression of the imaginary part (x,y,z) */
>> + inline VectorBlock<typename ei_traits<Derived>::Coefficients,3,1> vec() {
>> return this->derived().coeffs().template start<3>(); }
>> +
>> + /** \returns a read-only vector expression of the coefficients (x,y,z,w)
>> */
>> + inline const typename ei_traits<Derived>::Coefficients& coeffs() const {
>> return this->derived().coeffs(); }
>> +
>> + /** \returns a vector expression of the coefficients (x,y,z,w) */
>> + inline typename ei_traits<Derived>::Coefficients& coeffs() { return
>> this->derived().coeffs(); }
>> +
>> + template<class OtherDerived> QuaternionBase& operator=(const
>> QuaternionBase<OtherDerived>& other);
>> + QuaternionBase& operator=(const AngleAxisType& aa);
>> + template<class OtherDerived>
>> + QuaternionBase& operator=(const MatrixBase<OtherDerived>& m);
>> +
>> + /** \returns a quaternion representing an identity rotation
>> + * \sa MatrixBase::Identity()
>> + */
>> + inline static Quat<Scalar> Identity() { return Quat<Scalar>(1, 0, 0, 0);
>> }
>> +
>> + /** \sa Quaternion2::Identity(), MatrixBase::setIdentity()
>> + */
>> + inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return
>> *this; }
>> +
>> + /** \returns the squared norm of the quaternion's coefficients
>> + * \sa Quaternion2::norm(), MatrixBase::squaredNorm()
>> + */
>> + inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
>> +
>> + /** \returns the norm of the quaternion's coefficients
>> + * \sa Quaternion2::squaredNorm(), MatrixBase::norm()
>> + */
>> + inline Scalar norm() const { return coeffs().norm(); }
>> +
>> + /** Normalizes the quaternion \c *this
>> + * \sa normalized(), MatrixBase::normalize() */
>> + inline void normalize() { coeffs().normalize(); }
>> + /** \returns a normalized version of \c *this
>> + * \sa normalize(), MatrixBase::normalized() */
>> + inline Quat<Scalar> normalized() const { return
>> Quat<Scalar>(coeffs().normalized()); }
>> +
>> + /** \returns the dot product of \c *this and \a other
>> + * Geometrically speaking, the dot product of two unit quaternions
>> + * corresponds to the cosine of half the angle between the two
>> rotations.
>> + * \sa angularDistance()
>> + */
>> + template<class OtherDerived> inline Scalar dot(const
>> QuaternionBase<OtherDerived>& other) const { return
>> coeffs().dot(other.coeffs()); }
>> +
>> + template<class OtherDerived> inline Scalar angularDistance(const
>> QuaternionBase<OtherDerived>& other) const;
>> +
>> + Matrix3 toRotationMatrix(void) const;
>> +
>> + template<typename Derived1, typename Derived2>
>> + QuaternionBase& setFromTwoVectors(const MatrixBase<Derived1>& a, const
>> MatrixBase<Derived2>& b);
>> +
>> + template<class OtherDerived> inline Quat<Scalar> operator* (const
>> QuaternionBase<OtherDerived>& q) const;
>> + template<class OtherDerived> inline QuaternionBase& operator*= (const
>> QuaternionBase<OtherDerived>& q);
>> +
>> + Quat<Scalar> inverse(void) const;
>> + Quat<Scalar> conjugate(void) const;
>> +
>> + template<class OtherDerived> Quat<Scalar> slerp(Scalar t, const
>> QuaternionBase<OtherDerived>& other) const;
>> +
>> + /** \returns \c true if \c *this is approximately equal to \a other,
>> within the precision
>> + * determined by \a prec.
>> + *
>> + * \sa MatrixBase::isApprox() */
>> + bool isApprox(const QuaternionBase& other, typename RealScalar prec =
>> precision<Scalar>()) const
>> + { return coeffs().isApprox(other.coeffs(), prec); }
>> +
>> + Vector3 _transformVector(Vector3 v) const;
>> +
>> +};
>> +
>> +/* ########### Quat -> Quaternion */
>> +
>> +template<typename _Scalar>
>> +struct ei_traits<Quat<_Scalar> >
>> +{
>> + typedef _Scalar Scalar;
>> + typedef Matrix<_Scalar,4,1> Coefficients;
>> + enum{
>> + PacketAccess = Aligned
>> + };
>> +};
>> +
>> +template<typename _Scalar>
>> +class Quat : public QuaternionBase<Quat<_Scalar> >{
>> + typedef QuaternionBase<Quat<_Scalar> > Base;
>> +public:
>> + using Base::operator=;
>> +
>> + typedef _Scalar Scalar;
>> +
>> + typedef typename ei_traits<Quat<Scalar> >::Coefficients Coefficients;
>> + typedef typename Base::AngleAxisType AngleAxisType;
>> +
>> + /** Default constructor leaving the quaternion uninitialized. */
>> + inline Quat() {}
>> +
>> + /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
>> + * its four coefficients \a w, \a x, \a y and \a z.
>> + *
>> + * \warning Note the order of the arguments: the real \a w coefficient
>> first,
>> + * while internally the coefficients are stored in the following order:
>> + * [\c x, \c y, \c z, \c w]
>> + */
>> + inline Quat(Scalar w, Scalar x, Scalar y, Scalar z)
>> + { coeffs() << x, y, z, w; }
>> +
>> + /** Constructs and initialize a quaternion from the array data
>> + * This constructor is also used to map an array */
>> + inline Quat(const Scalar* data) : m_coeffs(data) {}
>> +
>> + /** Copy constructor */
>> +// template<class Derived> inline Quat(const QuaternionBase<Derived>&
>> other) { m_coeffs = other.coeffs(); } [XXX] redundant with 703
>> +
>> + /** Constructs and initializes a quaternion from the angle-axis \a aa */
>> + explicit inline Quat(const AngleAxisType& aa) { *this = aa; }
>> +
>> + /** Constructs and initializes a quaternion from either:
>> + * - a rotation matrix expression,
>> + * - a 4D vector expression representing quaternion coefficients.
>> + */
>> + template<typename Derived>
>> + explicit inline Quat(const MatrixBase<Derived>& other) { *this = other; }
>> +
>> + /** \returns \c *this with scalar type casted to \a NewScalarType
>> + *
>> + * Note that if \a NewScalarType is equal to the current scalar type of
>> \c *this
>> + * then this function smartly returns a const reference to \c *this.
>> + */
>> + template<class Derived>
>> + inline typename ei_cast_return_type<Quat, QuaternionBase<Derived> >::type
>> cast() const
>> + { return typename ei_cast_return_type<Quat, QuaternionBase<Derived>
>>>::type(*this); }
>> +
>> + /** Copy constructor with scalar type conversion */
>> + template<class Derived>
>> + inline explicit Quat(const QuaternionBase<Derived>& other)
>> + { m_coeffs = other.coeffs().template cast<Scalar>(); }
>> +
>> + inline Coefficients& coeffs() { return m_coeffs;}
>> + inline const Coefficients& coeffs() const { return m_coeffs;}
>> +
>> +protected:
>> + Coefficients m_coeffs;
>> +};
>> +
>> +/* ########### Map<Quat> */
>> +
>> +/** \class Map<Quat>
>> + * \nonstableyet
>> + *
>> + * \brief Expression of a quaternion
>> + *
>> + * \param Scalar the type of the vector of diagonal coefficients
>> + *
>> + * \sa class Quaternion, class QuaternionBase
>> + */
>> +template<typename _Scalar, int _PacketAccess>
>> +struct ei_traits<Map<Quat<_Scalar>, _PacketAccess> >:
>> +ei_traits<Quat<_Scalar> >
>> +{
>> + typedef _Scalar Scalar;
>> + typedef Map<Matrix<_Scalar,4,1> > Coefficients;
>> + enum {
>> + PacketAccess = _PacketAccess
>> + };
>> +};
>> +
>> +template<typename _Scalar, int PacketAccess>
>> +class Map<Quat<_Scalar>, PacketAccess > : public
>> QuaternionBase<Map<Quat<_Scalar>, PacketAccess> >, ei_no_assignment_operator
>> {
>> + public:
>> +
>> + typedef _Scalar Scalar;
>> +
>> + typedef typename ei_traits<Map<Quat<Scalar>, PacketAccess>
>>>::Coefficients Coefficients;
>> +
>> + inline Map<Quat<Scalar>, PacketAccess >(const Scalar* coeffs) :
>> m_coeffs(coeffs) {}
>> +
>> + inline Coefficients& coeffs() { return m_coeffs;}
>> + inline const Coefficients& coeffs() const { return m_coeffs;}
>> +
>> + protected:
>> + Coefficients m_coeffs;
>> +};
>> +
>> +typedef Map<Quat<double> > QuaternionMapd;
>> +typedef Map<Quat<float> > QuaternionMapf;
>> +typedef Map<Quat<double>, Aligned> QuaternionMapAlignedd;
>> +typedef Map<Quat<float>, Aligned> QuaternionMapAlignedf;
>> +
>> +// Generic Quaternion * Quaternion product
>> +template<int Arch, class Derived, class OtherDerived, typename Scalar, int
>> PacketAccess> struct ei_quat_product
>> +{
>> + inline static Quat<Scalar> run(const QuaternionBase<Derived>& a, const
>> QuaternionBase<OtherDerived>& b){
>> + return Quat<Scalar>
>> + (
>> + a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
>> + a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
>> + a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
>> + a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
>> + );
>> + }
>> +};
>> +
>> +/** \returns the concatenation of two rotations as a quaternion-quaternion
>> product */
>> +template <class Derived>
>> +template <class OtherDerived>
>> +inline Quat<typename ei_traits<QuaternionBase<Derived> >::Scalar>
>> QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>&
>> other) const
>> +{
>> + EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename
>> OtherDerived::Scalar>::ret),
>> +
>> YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
>> + return ei_quat_product<EiArch, Derived, OtherDerived,
>> + ei_traits<Derived>::Scalar,
>> + ei_traits<Derived>::PacketAccess &&
>> ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
>> +}
>> +
>> +/** \sa operator*(Quaternion) */
>> +template <class Derived>
>> +template <class OtherDerived>
>> +inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator*= (const
>> QuaternionBase<OtherDerived>& other)
>> +{
>> + return (*this = *this * other);
>> +}
>> +
>> +/** Rotation of a vector by a quaternion.
>> + * \remarks If the quaternion is used to rotate several points (>1)
>> + * then it is much more efficient to first convert it to a 3x3 Matrix.
>> + * Comparison of the operation cost for n transformations:
>> + * - Quaternion2: 30n
>> + * - Via a Matrix3: 24 + 15n
>> + */
>> +template <class Derived>
>> +inline typename QuaternionBase<Derived>::Vector3
>> +QuaternionBase<Derived>::_transformVector(Vector3 v) const
>> +{
>> + // Note that this algorithm comes from the optimization by hand
>> + // of the conversion to a Matrix followed by a Matrix/Vector product.
>> + // It appears to be much faster than the common algorithm found
>> + // in the litterature (30 versus 39 flops). It also requires two
>> + // Vector3 as temporaries.
>> + Vector3 uv = Scalar(2) * this->vec().cross(v);
>> + return v + this->w() * uv + this->vec().cross(uv);
>> +}
>> +
>> +template<class Derived>
>> +template<class OtherDerived>
>> +inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const
>> QuaternionBase<OtherDerived>& other)
>> +{
>> + coeffs() = other.coeffs();
>> + return *this;
>> +}
>> +
>> +/** Set \c *this from an angle-axis \a aa and returns a reference to \c
>> *this
>> + */
>> +template<class Derived>
>> +inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const
>> AngleAxisType& aa)
>> +{
>> + Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision
>> loss warnings
>> + this->w() = ei_cos(ha);
>> + this->vec() = ei_sin(ha) * aa.axis();
>> + return *this;
>> +}
>> +
>> +/** Set \c *this from the expression \a xpr:
>> + * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a
>> quaternion
>> + * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation
>> matrix
>> + * and \a xpr is converted to a quaternion
>> + */
>> +
>> +template<class Derived>
>> +template<class MatrixDerived>
>> +inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const
>> MatrixBase<MatrixDerived>& xpr)
>> +{
>> + EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename
>> MatrixDerived::Scalar>::ret),
>> +
>> YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
>> + ei_quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
>> + return *this;
>> +}
>> +
>> +/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is
>> required to
>> + * be normalized, otherwise the result is undefined.
>> + */
>> +template<class Derived>
>> +inline typename QuaternionBase<Derived>::Matrix3
>> +QuaternionBase<Derived>::toRotationMatrix(void) const
>> +{
>> + // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not
>> gcc 4.3 !!)
>> + // if not inlined then the cost of the return by value is huge ~ +35%,
>> + // however, not inlining this function is an order of magnitude slower,
>> so
>> + // it has to be inlined, and so the return by value is not an issue
>> + Matrix3 res;
>> +
>> + const Scalar tx = 2*this->x();
>> + const Scalar ty = 2*this->y();
>> + const Scalar tz = 2*this->z();
>> + const Scalar twx = tx*this->w();
>> + const Scalar twy = ty*this->w();
>> + const Scalar twz = tz*this->w();
>> + const Scalar txx = tx*this->x();
>> + const Scalar txy = ty*this->x();
>> + const Scalar txz = tz*this->x();
>> + const Scalar tyy = ty*this->y();
>> + const Scalar tyz = tz*this->y();
>> + const Scalar tzz = tz*this->z();
>> +
>> + res.coeffRef(0,0) = 1-(tyy+tzz);
>> + res.coeffRef(0,1) = txy-twz;
>> + res.coeffRef(0,2) = txz+twy;
>> + res.coeffRef(1,0) = txy+twz;
>> + res.coeffRef(1,1) = 1-(txx+tzz);
>> + res.coeffRef(1,2) = tyz-twx;
>> + res.coeffRef(2,0) = txz-twy;
>> + res.coeffRef(2,1) = tyz+twx;
>> + res.coeffRef(2,2) = 1-(txx+tyy);
>> +
>> + return res;
>> +}
>> +
>> +/** Sets \c *this to be a quaternion representing a rotation between
>> + * the two arbitrary vectors \a a and \a b. In other words, the built
>> + * rotation represent a rotation sending the line of direction \a a
>> + * to the line of direction \a b, both lines passing through the origin.
>> + *
>> + * \returns a reference to \c *this.
>> + *
>> + * Note that the two input vectors do \b not have to be normalized, and
>> + * do not need to have the same norm.
>> + */
>> +template<class Derived>
>> +template<typename Derived1, typename Derived2>
>> +inline QuaternionBase<Derived>&
>> QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a,
>> const MatrixBase<Derived2>& b)
>> +{
>> + Vector3 v0 = a.normalized();
>> + Vector3 v1 = b.normalized();
>> + Scalar c = v1.dot(v0);
>> +
>> + // if dot == -1, vectors are nearly opposites
>> + // => accuraletly compute the rotation axis by computing the
>> + // intersection of the two planes. This is done by solving:
>> + // x^T v0 = 0
>> + // x^T v1 = 0
>> + // under the constraint:
>> + // ||x|| = 1
>> + // which yields a singular value problem
>> + if (c < Scalar(-1)+precision<Scalar>())
>> + {
>> + c = std::max<Scalar>(c,-1);
>> + Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
>> + SVD<Matrix<Scalar,2,3> > svd(m);
>> + Vector3 axis = svd.matrixV().col(2);
>> +
>> + Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
>> + this->w() = ei_sqrt(w2);
>> + this->vec() = axis * ei_sqrt(Scalar(1) - w2);
>> + return *this;
>> + }
>> + Vector3 axis = v0.cross(v1);
>> + Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
>> + Scalar invs = Scalar(1)/s;
>> + this->vec() = axis * invs;
>> + this->w() = s * Scalar(0.5);
>> +
>> + return *this;
>> +}
>> +
>> +/** \returns the multiplicative inverse of \c *this
>> + * Note that in most cases, i.e., if you simply want the opposite
>> rotation,
>> + * and/or the quaternion is normalized, then it is enough to use the
>> conjugate.
>> + *
>> + * \sa Quaternion2::conjugate()
>> + */
>> +template <class Derived>
>> +inline Quat<typename ei_traits<QuaternionBase<Derived> >::Scalar>
>> QuaternionBase<Derived>::inverse() const
>> +{
>> + // FIXME should this function be called multiplicativeInverse and
>> conjugate() be called inverse() or opposite() ??
>> + Scalar n2 = this->squaredNorm();
>> + if (n2 > 0)
>> + return Quat<Scalar>(conjugate().coeffs() / n2);
>> + else
>> + {
>> + // return an invalid result to flag the error
>> + return Quat<Scalar>(ei_traits<Derived>::Coefficients::Zero());
>> + }
>> +}
>> +
>> +/** \returns the conjugate of the \c *this which is equal to the
>> multiplicative inverse
>> + * if the quaternion is normalized.
>> + * The conjugate of a quaternion represents the opposite rotation.
>> + *
>> + * \sa Quaternion2::inverse()
>> + */
>> +template <class Derived>
>> +inline Quat<typename ei_traits<QuaternionBase<Derived> >::Scalar>
>> QuaternionBase<Derived>::conjugate() const
>> +{
>> + return Quat<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
>> +}
>> +
>> +/** \returns the angle (in radian) between two rotations
>> + * \sa dot()
>> + */
>> +template <class Derived>
>> +template <class OtherDerived>
>> +inline typename ei_traits<QuaternionBase<Derived> >::Scalar
>> QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>&
>> other) const
>> +{
>> + double d = ei_abs(this->dot(other));
>> + if (d>=1.0)
>> + return 0;
>> + return Scalar(2) * std::acos(d);
>> +}
>> +
>> +/** \returns the spherical linear interpolation between the two quaternions
>> + * \c *this and \a other at the parameter \a t
>> + */
>> +template <class Derived>
>> +template <class OtherDerived>
>> +Quat<typename ei_traits<QuaternionBase<Derived> >::Scalar>
>> QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>&
>> other) const
>> +{
>> + static const Scalar one = Scalar(1) - precision<Scalar>();
>> + Scalar d = this->dot(other);
>> + Scalar absD = ei_abs(d);
>> + if (absD>=one)
>> + return Quat<Scalar>(*this);
>> +
>> + // theta is the angle between the 2 quaternions
>> + Scalar theta = std::acos(absD);
>> + Scalar sinTheta = ei_sin(theta);
>> +
>> + Scalar scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
>> + Scalar scale1 = ei_sin( ( t * theta) ) / sinTheta;
>> + if (d<0)
>> + scale1 = -scale1;
>> +
>> + return Quat<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
>> +}
>> +
>> +// set from a rotation matrix
>> +template<typename Other>
>> +struct ei_quaternionbase_assign_impl<Other,3,3>
>> +{
>> + typedef typename Other::Scalar Scalar;
>> + template<class Derived> inline static void run(QuaternionBase<Derived>&
>> q, const Other& mat)
>> + {
>> + // This algorithm comes from "Quaternion Calculus and Fast Animation",
>> + // Ken Shoemake, 1987 SIGGRAPH course notes
>> + Scalar t = mat.trace();
>> + if (t > 0)
>> + {
>> + t = ei_sqrt(t + Scalar(1.0));
>> + q.w() = Scalar(0.5)*t;
>> + t = Scalar(0.5)/t;
>> + q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
>> + q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
>> + q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
>> + }
>> + else
>> + {
>> + int i = 0;
>> + if (mat.coeff(1,1) > mat.coeff(0,0))
>> + i = 1;
>> + if (mat.coeff(2,2) > mat.coeff(i,i))
>> + i = 2;
>> + int j = (i+1)%3;
>> + int k = (j+1)%3;
>> +
>> + t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) +
>> Scalar(1.0));
>> + q.coeffs().coeffRef(i) = Scalar(0.5) * t;
>> + t = Scalar(0.5)/t;
>> + q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
>> + q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
>> + q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
>> + }
>> + }
>> +};
>> +
>> +// set from a vector of coefficients assumed to be a quaternion
>> +template<typename Other>
>> +struct ei_quaternionbase_assign_impl<Other,4,1>
>> +{
>> + typedef typename Other::Scalar Scalar;
>> + template<class Derived> inline static void run(QuaternionBase<Derived>&
>> q, const Other& vec)
>> + {
>> + q.coeffs() = vec;
>> + }
>> +};
>> +
>> +
>> #endif // EIGEN_QUATERNION_H
>> diff -r b065d9733716 -r 8eae2834af38 Eigen/src/Geometry/arch/Geometry_SSE.h
>> --- a/Eigen/src/Geometry/arch/Geometry_SSE.h Sat Oct 24 14:48:34 2009
>> +0200
>> +++ b/Eigen/src/Geometry/arch/Geometry_SSE.h Tue Oct 27 13:19:16 2009
>> +0000
>> @@ -45,6 +45,27 @@
>> return res;
>> }
>>
>> +template<class Derived, class OtherDerived> struct
>> ei_quat_product<EiArch_SSE, Derived, OtherDerived, float, Aligned>
>> +{
>> + inline static Quat<float> run(const QuaternionBase<Derived>& _a, const
>> QuaternionBase<OtherDerived>& _b)
>> + {
>> + const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0,0,0,0x80000000));
>> + Quat<float> res;
>> + __m128 a = _a.coeffs().packet<Aligned>(0);
>> + __m128 b = _b.coeffs().packet<Aligned>(0);
>> + __m128 flip1 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,1,2,0,2),
>> +
>> ei_vec4f_swizzle1(b,2,0,1,2)),mask);
>> + __m128 flip2 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,3,3,3,1),
>> +
>> ei_vec4f_swizzle1(b,0,1,2,1)),mask);
>> + ei_pstore(&res.x(),
>> +
>> _mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,ei_vec4f_swizzle1(b,3,3,3,3)),
>> +
>> _mm_mul_ps(ei_vec4f_swizzle1(a,2,0,1,0),
>> +
>> ei_vec4f_swizzle1(b,1,2,0,0))),
>> + _mm_add_ps(flip1,flip2)));
>> + return res;
>> + }
>> +};
>> +
>> template<typename VectorLhs,typename VectorRhs>
>> struct ei_cross3_impl<EiArch_SSE,VectorLhs,VectorRhs,float,true> {
>> inline static typename ei_plain_matrix_type<VectorLhs>::type
>>
>>
>