Re: [eigen] ASCII quick reference for Eigen2 |
[ Thread Index |
Date Index
| More lists.tuxfamily.org/eigen Archives
]
- To: eigen@xxxxxxxxxxxxxxxxxxx
- Subject: Re: [eigen] ASCII quick reference for Eigen2
- From: Gael Guennebaud <gael.guennebaud@xxxxxxxxx>
- Date: Mon, 2 Feb 2009 11:18:59 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:mime-version:received:in-reply-to:references :date:message-id:subject:from:to:content-type :content-transfer-encoding; bh=KkM9F8DcV4/KG0J2ytVLIvoHC7UqIeIkKLfLFjdp3zo=; b=IqWJ2FAQz+p6/SZfRrL2vMFKjpErrhzZkEhA79mtd7dvtGGspTA3gen8qrYVvTS7iu xfpjvgW+q/zr+aTmaLqHZ7lxwJZj60eI4l1y+8kG6TtpBo4Wl2PAiLquNBILdND7tCMO 0ay4sdw2eIzncVqhK0gTnniqvQLloza6QU2k4=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :content-type:content-transfer-encoding; b=k7llLWdcsNj//fUzSNHnQiLf8XmSPd9VEzE9qn+ZLJDL7JSoUXnOK+3BrLxQRcNK1O R8XRDciZot+LCaeJkKa7WSYpZ3K62qdbJag+78FjJMAQFB78pyGc7JDcZNpVyPql42Zh YYpP3quLzowtBJAntAQWNIJ+agIVpDZk7Fpgg=
Hi,
that's wondeful ! 2/3 remarks:
- the function norm2() has been removed
- I'd add: x.dot(y); // dot(x,y)
- x.squaredNorm() // dot(x, x)
=> this might be confusing since this is valid for real vector only.
For complex, you the MatLab counterpart is:
dot(abs(x),abs(x))
- I'd add a note stating that most R.cwise().* functions are in Eigen/Array
- what about adding select:
(R.cwise() < s).select(P,Q); // (R < s ? P : Q)
(I don't know the equivalent MatLab call)
- last add:
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
that's all for now,
gael.
On Mon, Feb 2, 2009 at 2:25 AM, Keir Mierle <mierle@xxxxxxxxx> wrote:
> This probably has some errors and is incomplete (no geometry or sparse or
> triangular stuff) but does include some Matlab translations. Comments and
> corrections welcome.
>
> Matrix<double, 3, 3> A; // Fixed rows and cols. Same as
> Matrix3d.
> Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
> Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
> Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
> Matrix3f P, Q, R; // 3x3 float matrix.
> Vector3f x, y, z; // 3x1 float matrix.
> RowVector3f a, b, c; // 1x3 float matrix.
> double s;
>
> A.resize(4, 4); // Runtime error if assertions are on.
> B.resize(4, 9); // Runtime error if assertions are on.
> A.resize(3, 3); // Ok; size didn't change.
> B.resize(3, 9); // Ok; only dynamic cols changed.
>
> A << 1, 2, 3, // Initialize A. The elements can also be
> 4, 5, 6, // matrices, which are stacked along cols
> 7, 8, 9; // and then the rows are stacked.
> B << A, A, A; // B is three horizontally stacked A's.
> A.fill(10); // Fill A with all 10's.
> A.setRandom(); // Fill A with uniform random numbers in (-1, 1).
> // Requires #include <Eigen/Array>.
> A.setIdentity(); // Fill A with the identity.
>
> // Matrix slicing and blocks. All expressions listed here are read/write.
> // Templated size versions are faster. Note that Matlab is 1-based (a size
> N
> // vector is x(1)...x(N)).
> // Eigen // Matlab
> x.start(n) // x(1:n)
> x.start<n>() // x(1:n)
> x.end(n) // N = rows(x); x(N - n: N)
> x.end<n>() // N = rows(x); x(N - n: N)
> x.segment(i, n) // x(i+1 : i+n)
> x.segment<n>(i) // x(i+1 : i+n)
> P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
> P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
> P.corner(TopLeft, rows, cols) // P(1:rows, 1:cols)
> P.corner(TopRight, rows, cols) // [m n]=size(P); P(1:rows, n-cols+1:n)
> P.corner(BottomLeft, rows, cols) // [m n]=size(P); P(m-rows+1:m, 1:cols)
> P.corner(BottomRight, rows, cols) // [m n]=size(P); P(m-rows+1:m,
> n-cols+1:n)
> P.corner<rows,cols>(TopLeft) // P(1:rows, 1:cols)
> P.corner<rows,cols>(TopRight) // [m n]=size(P); P(1:rows, n-cols+1:n)
> P.corner<rows,cols>(BottomLeft) // [m n]=size(P); P(m-rows+1:m, 1:cols)
> P.corner<rows,cols>(BottomRight) // [m n]=size(P); P(m-rows+1:m,
> n-cols+1:n)
> P.minor(i, j) // Something nasty.
>
> // Of particular note is Eigen's swap function which is highly optimized.
> // Eigen // Matlab
> R.row(i) = P.col(j); // R(i, :) = P(:, i)
> R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
>
> // Views, transpose, etc; all read-write except for .adjoint().
> // Eigen // Matlab
> R.adjoint() // conj(R')
> R.transpose() // R'
> R.diagonal() // diag(R)
> x.asDiagonal() // diag(x)
>
> // All the same as Matlab, but matlab doesn't have *= style operators.
> // Matrix-vector. Matrix-matrix. Matrix-scalar.
> y = M*x; R = P*Q; R = P*s;
> a = b*M; R = P - Q; R = s*P;
> a *= M; R = P + Q; R = P/s;
> R *= Q; R = s*P;
> R += Q; R *= s;
> R -= Q; R /= s;
>
> // Vectorized operations on each element independently.
> // Eigen // Matlab
> R = P.cwise() * Q; // R = P .* Q
> R = P.cwise() / Q; // R = P ./ Q
> R = P.cwise() + s; // R = P + s
> R = P.cwise() - s; // R = P - s
> R.cwise() += s; // R = R + s
> R.cwise() -= s; // R = R - s
> R.cwise() *= s; // R = R * s
> R.cwise() /= s; // R = R / s
> R.cwise() < Q; // R < Q
> R.cwise() <= Q; // R <= Q
> R.cwise().inverse(); // 1 ./ P
> R.cwise().sin() // sin(P)
> R.cwise().cos() // cos(P)
> R.cwise().pow(s) // P .^ s
> R.cwise().square() // P .^ 2
> R.cwise().cube() // P .^ 3
> R.cwise().sqrt() // sqrt(P)
> R.cwise().exp() // exp(P)
> R.cwise().log() // log(P)
> R.cwise().max(P) // max(R, P)
> R.cwise().min(P) // min(R, P)
> R.cwise().abs() // abs(P)
> R.cwise().abs2() // abs(P.^2)
>
> // Reductions.
> int r, c;
> // Eigen // Matlab
> R.minCoeff() // min(R(:))
> R.maxCoeff() // max(R(:))
> s = R.minCoeff(&r, &c) // [aa, bb] = min(R); [cc, dd] = min(aa);
> // r = bb(dd); c = dd; s = cc
> s = R.maxCoeff(&r, &c) // [aa, bb] = max(R); [cc, dd] = max(aa);
> // row = bb(dd); col = dd; s = cc
> R.sum() // sum(R(:))
> R.colwise.sum() // sum(R)
> R.rowwise.sum() // sum(R, 2) or sum(R')'
> R.trace() // trace(R)
> R.all() // all(R(:))
> R.colwise().all() // all(R)
> R.rowwise().all() // all(R, 2)
> R.any() // any(R(:))
> R.colwise().any() // any(R)
> R.rowwise().any() // any(R, 2)
>
> // Dot products, norms, etc.
> // Eigen // Matlab
> x.norm() // norm(x). Note that norm(R) doesn't work in
> Eigen.
> x.norm2() // dot(x, x)
> x.squaredNorm() // dot(x, x)
> x.cross(y) // cross(x, y)
>
> // Eigen can map existing memory into Eigen matrices.
> float array[3];
> Map<Vector3f>(array, 3).fill(10);
> int data[4] = 1, 2, 3, 4;
> Matrix2i mat2x2(data);
> MatrixXi mat2x2 = Map<Matrix2i>(data);
> MatrixXi mat2x2 = Map<MatrixXi>(data, 2, 2);
>
> // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
> bool solved;
> solved = A.ldlt().solve(b, &x)); // A symmetric p.s.d.
> solved = A.llt() .solve(b, &x)); // A symmetric p.d.
> solved = A.lu() .solve(b, &x)); // Stable and fast.
> solved = A.qr() .solve(b, &x)); // No pivoting.
> solved = A.svd() .solve(b, &x)); // Most stable, slowest.
> // .ldlt() -> .matrixL() and .matrixD()
> // .llt() -> .matrixL()
> // .lu() -> .matrixL() and .matrixU()
> // .qr() -> .matrixQ() and .matrixR()
> // .svd() -> .matrixU(), .singularValues(), and .matrixV()
>