Re: [eigen] AltiVec passes all tests :D |
[ Thread Index |
Date Index
| More lists.tuxfamily.org/eigen Archives
]
Ok,
With a few changes, AltiVec passes all tests now, well, except one,
eigensolver, but the cause of this might be sth different, I intend to look
about this further.
Anyway, ei_pdiv has been fixed for AltiVec (reciprocal and 1 round of Newton-
Raphson approximation which provides almost full accuracy, I could add another
round if you feel it's necessary). ei_palign have also been fixed, so
basically I could say that AltiVec is ready for benchmarking :)
Thanks for a great library, btw. I intend to use it myself to compute some
Pade approximant coefficients for another project of mine, we might even
include it in the tests/examples if you think it would be worth it :)
Regards
Konstantinos
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Konstantinos Margaritis <markos@xxxxxxxx>
// Copyright (C) 2008 Gael Guennebaud <g.gael@xxxxxxx>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PACKET_MATH_ALTIVEC_H
#define EIGEN_PACKET_MATH_ALTIVEC_H
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif
typedef vector float v4f;
typedef vector int v4i;
typedef vector unsigned int v4ui;
typedef vector __bool int v4bi;
// We don't want to write the same code all the time, but we need to reuse the constants
// and it doesn't really work to declare them global, so we define macros instead
#define USE_CONST_v0i const v4i v0i = vec_splat_s32(0)
#define USE_CONST_v1i const v4i v1i = vec_splat_s32(1)
#define USE_CONST_v16i_ const v4i v16i_ = vec_splat_s32(-16)
#define USE_CONST_v0f USE_CONST_v0i; const v4f v0f = (v4f) v0i;
#define USE_CONST_v1f USE_CONST_v1i; const v4f v1f = vec_ctf(v1i, 0);
#define USE_CONST_v1i_ const v4ui v1i_ = vec_splat_u32(-1);
#define USE_CONST_v0f_ USE_CONST_v1i_; const v4f v0f_ = (v4f) vec_sl(v1i_, v1i_);
template<> struct ei_packet_traits<float> { typedef v4f type; enum {size=4}; };
template<> struct ei_packet_traits<int> { typedef v4i type; enum {size=4}; };
template<> struct ei_unpacket_traits<v4f> { typedef float type; enum {size=4}; };
template<> struct ei_unpacket_traits<v4i> { typedef int type; enum {size=4}; };
std::ostream & operator <<(std::ostream & s, const v4f & v)
{
union {
v4f v;
float n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
std::ostream & operator <<(std::ostream & s, const v4i & v)
{
union {
v4i v;
int n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
std::ostream & operator <<(std::ostream & s, const v4ui & v)
{
union {
v4ui v;
unsigned int n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
std::ostream & operator <<(std::ostream & s, const v4bi & v)
{
union {
vector __bool int v;
unsigned int n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
template<> inline v4f ei_padd(const v4f& a, const v4f& b) { return vec_add(a,b); }
template<> inline v4i ei_padd(const v4i& a, const v4i& b) { return vec_add(a,b); }
template<> inline v4f ei_psub(const v4f& a, const v4f& b) { return vec_sub(a,b); }
template<> inline v4i ei_psub(const v4i& a, const v4i& b) { return vec_sub(a,b); }
template<> inline v4f ei_pmul(const v4f& a, const v4f& b) { USE_CONST_v0f; return vec_madd(a,b, v0f); }
template<> inline v4i ei_pmul(const v4i& a, const v4i& b)
{
// Detailed in: http://freevec.org/content/32bit_signed_integer_multiplication_altivec
//Set up constants, variables
v4i a1, b1, bswap, low_prod, high_prod, prod, prod_, v1sel;
USE_CONST_v0i;
USE_CONST_v1i;
USE_CONST_v16i_;
// Get the absolute values
a1 = vec_abs(a);
b1 = vec_abs(b);
// Get the signs using xor
v4bi sgn = (v4bi) vec_cmplt(vec_xor(a, b), v0i);
// Do the multiplication for the asbolute values.
bswap = (v4i) vec_rl((v4ui) b1, (v4ui) v16i_ );
low_prod = vec_mulo((vector short)a1, (vector short)b1);
high_prod = vec_msum((vector short)a1, (vector short)bswap, v0i);
high_prod = (v4i) vec_sl((v4ui) high_prod, (v4ui) v16i_);
prod = vec_add( low_prod, high_prod );
// NOR the product and select only the negative elements according to the sign mask
prod_ = vec_nor(prod, prod);
prod_ = vec_sel(v0i, prod_, sgn);
// Add 1 to the result to get the negative numbers
v1sel = vec_sel(v0i, v1i, sgn);
prod_ = vec_add(prod_, v1sel);
// Merge the results back to the final vector.
prod = vec_sel(prod, prod_, sgn);
return prod;
}
template<> inline v4f ei_pdiv(const v4f& a, const v4f& b) {
v4f t, y_0, y_1, res;
USE_CONST_v0f;
USE_CONST_v1f;
// Altivec does not offer a divide instruction, we have to do a reciprocal approximation
y_0 = vec_re(b);
// Do one Newton-Raphson iteration to get the needed accuracy
t = vec_nmsub(y_0, b, v1f);
y_1 = vec_madd(y_0, t, y_0);
res = vec_madd(a, y_1, v0f);
return res;
}
template<> inline v4f ei_pmadd(const v4f& a, const v4f& b, const v4f& c) { return vec_madd(a, b, c); }
template<> inline v4f ei_pmin(const v4f& a, const v4f& b) { return vec_min(a,b); }
template<> inline v4i ei_pmin(const v4i& a, const v4i& b) { return vec_min(a,b); }
template<> inline v4f ei_pmax(const v4f& a, const v4f& b) { return vec_max(a,b); }
template<> inline v4i ei_pmax(const v4i& a, const v4i& b) { return vec_max(a,b); }
template<> inline v4f ei_pload(const float* from) { return vec_ld(0, from); }
template<> inline v4i ei_pload(const int* from) { return vec_ld(0, from); }
template<> inline v4f ei_ploadu(const float* from)
{
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
vector unsigned char MSQ, LSQ;
vector unsigned char mask;
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
mask = vec_lvsl(0, from); // create the permute mask
return (v4f) vec_perm(MSQ, LSQ, mask); // align the data
}
template<> inline v4i ei_ploadu(const int* from)
{
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
vector unsigned char MSQ, LSQ;
vector unsigned char mask;
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
mask = vec_lvsl(0, from); // create the permute mask
return (v4i) vec_perm(MSQ, LSQ, mask); // align the data
}
template<> inline v4f ei_pset1(const float& from)
{
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
float __attribute__(aligned(16)) af[4];
af[0] = from;
v4f vc = vec_ld(0, af);
vc = vec_splat(vc, 0);
return vc;
}
template<> inline v4i ei_pset1(const int& from)
{
int __attribute__(aligned(16)) ai[4];
ai[0] = from;
v4i vc = vec_ld(0, ai);
vc = vec_splat(vc, 0);
return vc;
}
template<> inline void ei_pstore(float* to, const v4f& from) { vec_st(from, 0, to); }
template<> inline void ei_pstore(int* to, const v4i& from) { vec_st(from, 0, to); }
template<> inline void ei_pstoreu(float* to, const v4f& from)
{
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
// Warning: not thread safe!
vector unsigned char MSQ, LSQ, edges;
vector unsigned char edgeAlign, align;
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges
align = vec_lvsr( 0, to ); // permute map to misalign data
MSQ = vec_perm(edges,(vector unsigned char)from,align); // misalign the data (MSQ)
LSQ = vec_perm((vector unsigned char)from,edges,align); // misalign the data (LSQ)
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
}
template<> inline void ei_pstoreu(int* to , const v4i& from )
{
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
// Warning: not thread safe!
vector unsigned char MSQ, LSQ, edges;
vector unsigned char edgeAlign, align;
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges
align = vec_lvsr( 0, to ); // permute map to misalign data
MSQ = vec_perm(edges,(vector unsigned char)from,align); // misalign the data (MSQ)
LSQ = vec_perm((vector unsigned char)from,edges,align); // misalign the data (LSQ)
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
}
template<> inline float ei_pfirst(const v4f& a)
{
float __attribute__(aligned(16)) af[4];
vec_st(a, 0, af);
return af[0];
}
template<> inline int ei_pfirst(const v4i& a)
{
int __attribute__(aligned(16)) ai[4];
vec_st(a, 0, ai);
return ai[0];
}
inline v4f ei_preduxp(const v4f* vecs)
{
v4f v[4], sum[4];
// It's easier and faster to transpose then add as columns
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
// Do the transpose, first set of moves
v[0] = vec_mergeh(vecs[0], vecs[2]);
v[1] = vec_mergel(vecs[0], vecs[2]);
v[2] = vec_mergeh(vecs[1], vecs[3]);
v[3] = vec_mergel(vecs[1], vecs[3]);
// Get the resulting vectors
sum[0] = vec_mergeh(v[0], v[2]);
sum[1] = vec_mergel(v[0], v[2]);
sum[2] = vec_mergeh(v[1], v[3]);
sum[3] = vec_mergel(v[1], v[3]);
// Now do the summation:
// Lines 0+1
sum[0] = vec_add(sum[0], sum[1]);
// Lines 2+3
sum[1] = vec_add(sum[2], sum[3]);
// Add the results
sum[0] = vec_add(sum[0], sum[1]);
return sum[0];
}
inline float ei_predux(const v4f& a)
{
v4f b, sum;
b = (v4f)vec_sld(a, a, 8);
sum = vec_add(a, b);
b = (v4f)vec_sld(sum, sum, 4);
sum = vec_add(sum, b);
return ei_pfirst(sum);
}
inline v4i ei_preduxp(const v4i* vecs)
{
v4i v[4], sum[4];
// It's easier and faster to transpose then add as columns
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
// Do the transpose, first set of moves
v[0] = vec_mergeh(vecs[0], vecs[2]);
v[1] = vec_mergel(vecs[0], vecs[2]);
v[2] = vec_mergeh(vecs[1], vecs[3]);
v[3] = vec_mergel(vecs[1], vecs[3]);
// Get the resulting vectors
sum[0] = vec_mergeh(v[0], v[2]);
sum[1] = vec_mergel(v[0], v[2]);
sum[2] = vec_mergeh(v[1], v[3]);
sum[3] = vec_mergel(v[1], v[3]);
// Now do the summation:
// Lines 0+1
sum[0] = vec_add(sum[0], sum[1]);
// Lines 2+3
sum[1] = vec_add(sum[2], sum[3]);
// Add the results
sum[0] = vec_add(sum[0], sum[1]);
return sum[0];
}
inline int ei_predux(const v4i& a)
{
USE_CONST_v0i;
v4i sum;
sum = vec_sums(a, v0i);
sum = vec_sld(sum, v0i, 12);
return ei_pfirst(sum);
}
template<int Offset>
struct ei_palign_impl<Offset, v4f>
{
inline static void run(v4f& first, const v4f& second)
{
first = vec_sld(first, second, Offset*4);
}
};
template<int Offset>
struct ei_palign_impl<Offset, v4i>
{
inline static void run(v4i& first, const v4i& second)
{
first = vec_sld(first, second, Offset*4);
}
};
#endif // EIGEN_PACKET_MATH_ALTIVEC_H