[eigen] some problems with building with AltiVec enabled

[ Thread Index | Date Index | More lists.tuxfamily.org/eigen Archives ]


Hi all,

I'd like to bring the AltiVec support back to life :) and I did some tests.
For some reason, template specialization doesn't seem to work for
AltiVec and the following errors occur (while compiling adjoint.cpp):

Any help appreciated. I also attach my current AltiVec/PacketMath.h
(note that it will not compile cleanly due to ei_palign() not properly
implemented, apparently offset is a runtime value and vec_sld() needs
values known at compile time, anyway, this is irrelevant for the problem,
I hed the same problems even before).

Konstantinos
---------------------------------------
> make                       
[  4%] Building CXX object test/CMakeFiles/test_adjoint.dir/adjoint.o
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘typename Eigen::ei_packet_traits<T>::type Eigen::ei_pload(const 
Scalar*) [with Scalar = int]’:                                                                                                                           
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:109:   instantiated from ‘typename Eigen::ei_packet_traits<T>::type 
Eigen::ei_ploadt(const Scalar*) [with Scalar = int, int LoadMode = 0]’                                                                                             
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:164:   instantiated from ‘typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, 
_Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::packet(int) const [with int 
LoadMode = 0, _Scalar = int, int _Rows = 10000, int _Cols = 1, int _MaxRows = 10000, int _MaxCols = 1, unsigned int _Flags = 120u]’                             
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:190:   instantiated from ‘static typename Derived1::Scalar Eigen::ei_dot_impl<Derived1, 
Derived2, 1, 2>::run(const Derived1&, const Derived2&) [with Derived1 = const Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<int>, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 1, 10000, 1, 120u> >, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 1, 10000, 1, 120u> > >, Derived2 = const Eigen::Matrix<int, 10000, 
1, 10000, 1, 120u>]’                                                   
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:261:   instantiated from ‘typename Eigen::ei_traits<T>::Scalar 
Eigen::MatrixBase<Derived>::dot(const Eigen::MatrixBase<OtherDerived>&) const [with OtherDerived = Eigen::Matrix<int, 10000, 1, 10000, 1, 120u>, 
Derived = Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<int>, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 
1, 10000, 1, 120u> >, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 1, 10000, 1, 120u> > >]’                                                              
/home/markos/Development/eigen2/test/adjoint.cpp:64:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::MatrixXi]’      
/home/markos/Development/eigen2/test/adjoint.cpp:97:   instantiated from here                                                                       
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:64: σφάλμα: cannot convert ‘const int’ to ‘int __vector__’ in return               
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘typename Eigen::ei_packet_traits<T>::type 
Eigen::ei_ploadu(const Scalar*) [with Scalar = int]’:                                                                                                                          
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:111:   instantiated from ‘typename Eigen::ei_packet_traits<T>::type 
Eigen::ei_ploadt(const Scalar*) [with Scalar = int, int LoadMode = 0]’                                                                                             
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:164:   instantiated from ‘typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, 
_Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::packet(int) const [with int 
LoadMode = 0, _Scalar = int, int _Rows = 10000, int _Cols = 1, int _MaxRows = 10000, int _MaxCols = 1, unsigned int _Flags = 120u]’                             
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:190:   instantiated from ‘static typename Derived1::Scalar Eigen::ei_dot_impl<Derived1, 
Derived2, 1, 2>::run(const Derived1&, const Derived2&) [with Derived1 = const Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<int>, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 1, 10000, 1, 120u> >, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 1, 10000, 1, 120u> > >, Derived2 = const Eigen::Matrix<int, 10000, 
1, 10000, 1, 120u>]’                                                   
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:261:   instantiated from ‘typename Eigen::ei_traits<T>::Scalar 
Eigen::MatrixBase<Derived>::dot(const Eigen::MatrixBase<OtherDerived>&) const [with OtherDerived = Eigen::Matrix<int, 10000, 1, 10000, 1, 120u>, 
Derived = Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<int>, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 
1, 10000, 1, 120u> >, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<int>, Eigen::Matrix<int, 10000, 1, 10000, 1, 120u> > >]’                                                              
/home/markos/Development/eigen2/test/adjoint.cpp:64:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::MatrixXi]’      
/home/markos/Development/eigen2/test/adjoint.cpp:97:   instantiated from here                                                                       
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:68: σφάλμα: cannot convert ‘const int’ to ‘int __vector__’ in return               
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘typename Eigen::ei_packet_traits<T>::type Eigen::ei_pload(const 
Scalar*) [with Scalar = float]’:                                                                                                                         
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:109:   instantiated from ‘typename Eigen::ei_packet_traits<T>::type 
Eigen::ei_ploadt(const Scalar*) [with Scalar = float, int LoadMode = 0]’                                                                                           
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:164:   instantiated from ‘typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, 
_Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::packet(int) const [with int 
LoadMode = 0, _Scalar = float, int _Rows = 100, int _Cols = 1, int _MaxRows = 100, int _MaxCols = 1, unsigned int _Flags = 120u]’                               
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:190:   instantiated from ‘static typename Derived1::Scalar Eigen::ei_dot_impl<Derived1, 
Derived2, 1, 2>::run(const Derived1&, const Derived2&) [with Derived1 = const Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<float>, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 100, 1, 100, 1, 120u> >, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 100, 1, 100, 1, 120u> > >, Derived2 = const Eigen::Matrix<float, 100, 1, 
100, 1, 120u>]’                                                   
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:261:   instantiated from ‘typename Eigen::ei_traits<T>::Scalar 
Eigen::MatrixBase<Derived>::dot(const Eigen::MatrixBase<OtherDerived>&) const [with OtherDerived = Eigen::Matrix<float, 100, 1, 100, 1, 120u>, 
Derived = Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<float>, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 
100, 1, 100, 1, 120u> >, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 100, 1, 100, 1, 120u> > >]’                                                              
/home/markos/Development/eigen2/test/adjoint.cpp:64:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::Matrix<float, 100, 
100, 100, 100, 120u>]’                                                                                                                           
/home/markos/Development/eigen2/test/adjoint.cpp:101:   instantiated from here                                                                      
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:64: σφάλμα: cannot convert ‘const float’ to ‘float __vector__’ in return           
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘typename Eigen::ei_packet_traits<T>::type 
Eigen::ei_ploadu(const Scalar*) [with Scalar = float]’:                                                                                                                        
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:111:   instantiated from ‘typename Eigen::ei_packet_traits<T>::type 
Eigen::ei_ploadt(const Scalar*) [with Scalar = float, int LoadMode = 0]’                                                                                           
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:164:   instantiated from ‘typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, 
_Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>::packet(int) const [with int 
LoadMode = 0, _Scalar = float, int _Rows = 100, int _Cols = 1, int _MaxRows = 100, int _MaxCols = 1, unsigned int _Flags = 120u]’                               
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:190:   instantiated from ‘static typename Derived1::Scalar Eigen::ei_dot_impl<Derived1, 
Derived2, 1, 2>::run(const Derived1&, const Derived2&) [with Derived1 = const Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<float>, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 100, 1, 100, 1, 120u> >, 
Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 100, 1, 100, 1, 120u> > >, Derived2 = const Eigen::Matrix<float, 100, 1, 
100, 1, 120u>]’                                                   
/home/markos/Development/eigen2/Eigen/src/Core/Dot.h:261:   instantiated from ‘typename Eigen::ei_traits<T>::Scalar 
Eigen::MatrixBase<Derived>::dot(const Eigen::MatrixBase<OtherDerived>&) const [with OtherDerived = Eigen::Matrix<float, 100, 1, 100, 1, 120u>, 
Derived = Eigen::CwiseBinaryOp<Eigen::ei_scalar_sum_op<float>, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 
100, 1, 100, 1, 120u> >, Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<float>, Eigen::Matrix<float, 100, 1, 100, 1, 120u> > >]’                                                              
/home/markos/Development/eigen2/test/adjoint.cpp:64:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::Matrix<float, 100, 
100, 100, 100, 120u>]’                                                                                                                           
/home/markos/Development/eigen2/test/adjoint.cpp:101:   instantiated from here                                                                      
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:68: σφάλμα: cannot convert ‘const float’ to ‘float __vector__’ in return           
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘void Eigen::ei_pstore(Scalar*, const Packet&) [with Scalar = int, 
Packet = int __vector__]’:                                                                                                                             
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:118:   instantiated from ‘void Eigen::ei_pstoret(Scalar*, const Packet&) [with 
Scalar = int, Packet = int __vector__, int LoadMode = 0]’                                                                                               
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:179:   instantiated from ‘void Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::writePacket(int, const typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar&) 
[with int StoreMode = 0, _Scalar = int, int _Rows = 10000, int _Cols = 10000, int _MaxRows = 10000, int _MaxCols = 10000, unsigned int _Flags = 
120u]’        
/home/markos/Development/eigen2/Eigen/src/Core/Coeffs.h:315:   instantiated from ‘void Eigen::MatrixBase<Derived>::copyPacket(int, const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>, int StoreMode = 0, int LoadMode = 0, 
Derived = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>]’                                                                                                 
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:318:   instantiated from ‘static void Eigen::ei_assign_impl<Derived1, Derived2, 1, 
2>::run(Derived1&, const Derived2&) [with Derived1 = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>, Derived2 = Eigen::Matrix<int, 10000, 
10000, 10000, 10000, 120u>]’                                                                                                                                     
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:404:   instantiated from ‘Derived& Eigen::MatrixBase<Derived>::lazyAssign(const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>, Derived = Eigen::Matrix<int, 10000, 
10000, 10000, 10000, 120u>]’                                                                                                                                       
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:343:   instantiated from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::Matrix(const Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>&) [with _Scalar = int, int _Rows = 10000, int _Cols = 10000, 
int _MaxRows = 10000, int _MaxCols = 10000, unsigned int _Flags = 120u]’                                                                                     
/home/markos/Development/eigen2/test/adjoint.cpp:38:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::MatrixXi]’      
/home/markos/Development/eigen2/test/adjoint.cpp:97:   instantiated from here                                                                       
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:76: σφάλμα: cannot convert ‘const int __vector__’ to ‘int’ in assignment           
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘void Eigen::ei_pstoreu(Scalar*, const Packet&) [with Scalar = int, 
Packet = int __vector__]’:                                                                                                                            
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:120:   instantiated from ‘void Eigen::ei_pstoret(Scalar*, const Packet&) [with 
Scalar = int, Packet = int __vector__, int LoadMode = 0]’                                                                                               
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:179:   instantiated from ‘void Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::writePacket(int, const typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar&) 
[with int StoreMode = 0, _Scalar = int, int _Rows = 10000, int _Cols = 10000, int _MaxRows = 10000, int _MaxCols = 10000, unsigned int _Flags = 
120u]’        
/home/markos/Development/eigen2/Eigen/src/Core/Coeffs.h:315:   instantiated from ‘void Eigen::MatrixBase<Derived>::copyPacket(int, const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>, int StoreMode = 0, int LoadMode = 0, 
Derived = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>]’                                                                                                 
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:318:   instantiated from ‘static void Eigen::ei_assign_impl<Derived1, Derived2, 1, 
2>::run(Derived1&, const Derived2&) [with Derived1 = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>, Derived2 = Eigen::Matrix<int, 10000, 
10000, 10000, 10000, 120u>]’                                                                                                                                     
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:404:   instantiated from ‘Derived& Eigen::MatrixBase<Derived>::lazyAssign(const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::Matrix<int, 10000, 10000, 10000, 10000, 120u>, Derived = Eigen::Matrix<int, 10000, 
10000, 10000, 10000, 120u>]’                                                                                                                                       
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:343:   instantiated from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::Matrix(const Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags>&) [with _Scalar = int, int _Rows = 10000, int _Cols = 10000, 
int _MaxRows = 10000, int _MaxCols = 10000, unsigned int _Flags = 120u]’                                                                                     
/home/markos/Development/eigen2/test/adjoint.cpp:38:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::MatrixXi]’      
/home/markos/Development/eigen2/test/adjoint.cpp:97:   instantiated from here                                                                       
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:80: σφάλμα: cannot convert ‘const int __vector__’ to ‘int’ in assignment           
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘void Eigen::ei_pstore(Scalar*, const Packet&) [with Scalar = float, 
Packet = float __vector__]’:                                                                                                                         
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:118:   instantiated from ‘void Eigen::ei_pstoret(Scalar*, const Packet&) [with 
Scalar = float, Packet = float __vector__, int LoadMode = 0]’
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:179:   instantiated from ‘void Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::writePacket(int, const typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar&) 
[with intStoreMode = 0, _Scalar = float, int _Rows = 100, int _Cols = 100, int _MaxRows = 100, int _MaxCols = 100, unsigned int _Flags = 120u]’
/home/markos/Development/eigen2/Eigen/src/Core/Coeffs.h:315:   instantiated from ‘void Eigen::MatrixBase<Derived>::copyPacket(int, const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, Eigen::Matrix<float, 100, 100, 
100, 100, 120u> >, int StoreMode = 0, int LoadMode = 1, Derived = Eigen::Matrix<float, 100, 100, 100, 100, 120u>]’
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:318:   instantiated from ‘static void Eigen::ei_assign_impl<Derived1, Derived2, 1, 
2>::run(Derived1&, const Derived2&) [with Derived1 = Eigen::Matrix<float, 100, 100, 100, 100, 120u>, Derived2 = 
Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, Eigen::Matrix<float, 100, 100, 100, 100, 120u> >]’
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:404:   instantiated from ‘Derived& Eigen::MatrixBase<Derived>::lazyAssign(const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, Eigen::Matrix<float, 100, 100, 
100, 100, 120u> >, Derived = Eigen::Matrix<float, 100, 100, 100, 100, 120u>]’
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:337:   instantiated from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::Matrix(const Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, 
Eigen::Matrix<float,100, 100, 100, 100, 120u> >, _Scalar = float, int _Rows = 100, int _Cols = 100, int _MaxRows = 100, int _MaxCols = 100, unsigned 
int _Flags = 120u]’
/home/markos/Development/eigen2/test/adjoint.cpp:41:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::Matrix<float, 100, 
100, 100, 100, 120u>]’
/home/markos/Development/eigen2/test/adjoint.cpp:101:   instantiated from here
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:76: σφάλμα: cannot convert ‘const float __vector__’ to ‘float’ in assignment
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h: In function ‘void Eigen::ei_pstoreu(Scalar*, const Packet&) [with Scalar = 
float,Packet = float __vector__]’:
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:120:   instantiated from ‘void Eigen::ei_pstoret(Scalar*, const Packet&) [with 
Scalar = float, Packet = float __vector__, int LoadMode = 0]’
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:179:   instantiated from ‘void Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::writePacket(int, const typename Eigen::MatrixBase<Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags> >::PacketScalar&) 
[with intStoreMode = 0, _Scalar = float, int _Rows = 100, int _Cols = 100, int _MaxRows = 100, int _MaxCols = 100, unsigned int _Flags = 120u]’
/home/markos/Development/eigen2/Eigen/src/Core/Coeffs.h:315:   instantiated from ‘void Eigen::MatrixBase<Derived>::copyPacket(int, const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, Eigen::Matrix<float, 100, 100, 
100, 100, 120u> >, int StoreMode = 0, int LoadMode = 1, Derived = Eigen::Matrix<float, 100, 100, 100, 100, 120u>]’
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:318:   instantiated from ‘static void Eigen::ei_assign_impl<Derived1, Derived2, 1, 
2>::run(Derived1&, const Derived2&) [with Derived1 = Eigen::Matrix<float, 100, 100, 100, 100, 120u>, Derived2 = 
Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, Eigen::Matrix<float, 100, 100, 100, 100, 120u> >]’
/home/markos/Development/eigen2/Eigen/src/Core/Assign.h:404:   instantiated from ‘Derived& Eigen::MatrixBase<Derived>::lazyAssign(const 
Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, Eigen::Matrix<float, 100, 100, 
100, 100, 120u> >, Derived = Eigen::Matrix<float, 100, 100, 100, 100, 120u>]’
/home/markos/Development/eigen2/Eigen/src/Core/Matrix.h:337:   instantiated from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, 
_Flags>::Matrix(const Eigen::MatrixBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Eigen::ei_scalar_constant_op<float>, 
Eigen::Matrix<float,100, 100, 100, 100, 120u> >, _Scalar = float, int _Rows = 100, int _Cols = 100, int _MaxRows = 100, int _MaxCols = 100, unsigned 
int _Flags = 120u]’
/home/markos/Development/eigen2/test/adjoint.cpp:41:   instantiated from ‘void adjoint(const MatrixType&) [with MatrixType = Eigen::Matrix<float, 100, 
100, 100, 100, 120u>]’
/home/markos/Development/eigen2/test/adjoint.cpp:101:   instantiated from here
/home/markos/Development/eigen2/Eigen/src/Core/DummyPacketMath.h:80: σφάλμα: cannot convert ‘const float __vector__’ to ‘float’ in assignment
make[2]: *** [test/CMakeFiles/test_adjoint.dir/adjoint.o] Error 1
make[1]: *** [test/CMakeFiles/test_adjoint.dir/all] Error 2
make: *** [all] Error 2
---------------------------------------
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Konstantinos Margaritis <markos@xxxxxxxx>
// Copyright (C) 2008 Gael Guennebaud <g.gael@xxxxxxx>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_PACKET_MATH_ALTIVEC_H
#define EIGEN_PACKET_MATH_ALTIVEC_H

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif

static const vector int   v0i   = vec_splat_s32(0);
static const vector int   v16i_ = vec_splat_s32(-16);
static const vector float v0f   = (vector float) v0i;

template<> struct ei_packet_traits<float>  { typedef vector float type; enum {size=4}; };
template<> struct ei_packet_traits<int>    { typedef vector int type; enum {size=4}; };

template<> struct ei_unpacket_traits<vector float>  { typedef float  type; enum {size=4}; };
template<> struct ei_unpacket_traits<vector int>    { typedef int    type; enum {size=4}; };

inline vector float  ei_padd(const vector float   a, const vector float   b) { return vec_add(a,b); }
inline vector int    ei_padd(const vector int     a, const vector int     b) { return vec_add(a,b); }

inline vector float  ei_psub(const vector float   a, const vector float   b) { return vec_sub(a,b); }
inline vector int    ei_psub(const vector int     a, const vector int     b) { return vec_sub(a,b); }

inline vector float  ei_pmul(const vector float   a, const vector float   b) { return vec_madd(a,b, v0f); }
inline vector int    ei_pmul(const vector int     a, const vector int     b)
{
  // Taken from http://developer.apple.com/hardwaredrivers/ve/algorithms.html#Multiply32
  //Set up constants
  vector int bswap, lowProduct, highProduct;

  // Do real work
  bswap = (vector int)vec_rl( (vector unsigned int)b, (vector unsigned int)v16i_ );
  lowProduct = vec_mulo( (vector short)a,(vector short)b );
  highProduct = vec_msum((vector short)a,(vector short)bswap, v0i);
  highProduct = (vector int) vec_sl( (vector unsigned int)highProduct, (vector unsigned int)v16i_ );
  return vec_add( lowProduct, highProduct );
}

inline vector float  ei_pdiv(const vector float   a, const vector float   b) {
  // Altivec does not offer a divide instruction, we have to do a reciprocal approximation
  vector float y = vec_re(b);

  // Set up some constants for inverse reciprocals
  vector unsigned int v1_;
  vector float v1, v0_;
  v1 = (vector float) vec_splat_u32(1);
  v1_ = vec_splat_u32(-1);
  v0_ = (vector float) vec_sl(v1_, v1_);
  // Do a Newton-Raphson iteration to get the needed accuracy
  y = vec_madd(vec_nmsub( y, b, v1 ), y, y);
  vector float res = vec_madd(a, y, v0_);
  return res;
}

inline vector float ei_pmadd(const vector float   a, const vector float   b, const vector float c) { return vec_madd(a, b, c); }

inline vector float  ei_pmin(const vector float   a, const vector float   b) { return vec_min(a,b); }
inline vector int    ei_pmin(const vector int     a, const vector int     b) { return vec_min(a,b); }

inline vector float  ei_pmax(const vector float   a, const vector float   b) { return vec_max(a,b); }
inline vector int    ei_pmax(const vector int     a, const vector int     b) { return vec_max(a,b); }

inline vector float  ei_pload(const float*   from) { return vec_ld(0, from); }
inline vector int    ei_pload(const int*     from) { return vec_ld(0, from); }

inline vector float  ei_ploadu(const float*  from)
{
  // Shamelessly taken from 
  vector unsigned char MSQ, LSQ;
  vector unsigned char mask;
  MSQ = vec_ld(0, (unsigned char *)from);          // most significant quadword
  LSQ = vec_ld(15, (unsigned char *)from);         // least significant quadword
  mask = vec_lvsl(0, from);                        // create the permute mask
  return (vector float) vec_perm(MSQ, LSQ, mask);  // align the data
}

inline vector int    ei_ploadu(const int*    from)
{
  // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
  vector unsigned char MSQ, LSQ;
  vector unsigned char mask;
  MSQ = vec_ld(0, (unsigned char *)from);          // most significant quadword
  LSQ = vec_ld(15, (unsigned char *)from);         // least significant quadword
  mask = vec_lvsl(0, from);                        // create the permute mask
  return (vector int) vec_perm(MSQ, LSQ, mask);    // align the data
}

inline vector float  ei_pset1(const float&  from)
{
  // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
  float __attribute__(aligned(16)) af[4];
  af[0] = from;
  vector float vc = vec_ld(0, af);
  vc = vec_splat(vc, 0);
  return vc;
}

inline vector int    ei_pset1(const int&    from)
{
  int __attribute__(aligned(16)) ai[4];
  ai[0] = from;
  vector int vc = vec_ld(0, ai);
  vc = vec_splat(vc, 0);
  return vc;
}

inline void ei_pstore(float*   to, const vector float   from) { vec_st(from, 0, to); }
inline void ei_pstore(int*     to, const vector int     from) { vec_st(from, 0, to); }

inline void ei_pstoreu(float*  to, const vector float   from)
{
  // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
  // Warning: not thread safe!
  vector unsigned char MSQ, LSQ, edges;
  vector unsigned char edgeAlign, align;

  MSQ = vec_ld(0, (unsigned char *)to);                     // most significant quadword
  LSQ = vec_ld(15, (unsigned char *)to);                    // least significant quadword
  edgeAlign = vec_lvsl(0, to);                              // permute map to extract edges
  edges=vec_perm(LSQ,MSQ,edgeAlign);                        // extract the edges
  align = vec_lvsr( 0, to );                                // permute map to misalign data
  MSQ = vec_perm(edges,(vector unsigned char)from,align);   // misalign the data (MSQ)
  LSQ = vec_perm((vector unsigned char)from,edges,align);   // misalign the data (LSQ)
  vec_st( LSQ, 15, (unsigned char *)to );                   // Store the LSQ part first
  vec_st( MSQ, 0, (unsigned char *)to );                    // Store the MSQ part
}

inline void ei_pstoreu(int*    to , const vector int    from )
{
  // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
  // Warning: not thread safe!
  vector unsigned char MSQ, LSQ, edges;
  vector unsigned char edgeAlign, align;

  MSQ = vec_ld(0, (unsigned char *)to);                     // most significant quadword
  LSQ = vec_ld(15, (unsigned char *)to);                    // least significant quadword
  edgeAlign = vec_lvsl(0, to);                              // permute map to extract edges
  edges=vec_perm(LSQ,MSQ,edgeAlign);                        // extract the edges
  align = vec_lvsr( 0, to );                                // permute map to misalign data
  MSQ = vec_perm(edges,(vector unsigned char)from,align);   // misalign the data (MSQ)
  LSQ = vec_perm((vector unsigned char)from,edges,align);   // misalign the data (LSQ)
  vec_st( LSQ, 15, (unsigned char *)to );                   // Store the LSQ part first
  vec_st( MSQ, 0, (unsigned char *)to );                    // Store the MSQ part
}

inline float  ei_pfirst(const vector float  a)
{
  float __attribute__(aligned(16)) af[4];
  vec_st(a, 0, af);
  return af[0];
}

inline int    ei_pfirst(const vector int    a)
{
  int __attribute__(aligned(16)) ai[4];
  vec_st(a, 0, ai);
  return ai[0];
}

inline vector float ei_preduxp(const vector float* vecs)
{
  vector float v[4], sum[4];

  // It's easier and faster to transpose then add as columns
  // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
  // Do the transpose, first set of moves
  v[0] = vec_mergeh(vecs[0], vecs[2]);
  v[1] = vec_mergel(vecs[0], vecs[2]);
  v[2] = vec_mergeh(vecs[1], vecs[3]);
  v[3] = vec_mergel(vecs[1], vecs[3]);
  // Get the resulting vectors
  sum[0] = vec_mergeh(v[0], v[2]);
  sum[1] = vec_mergel(v[0], v[2]);
  sum[2] = vec_mergeh(v[1], v[3]);
  sum[3] = vec_mergel(v[1], v[3]);

  // Now do the summation:
  // Lines 0+1
  sum[0] = vec_add(sum[0], sum[1]);
  // Lines 2+3
  sum[1] = vec_add(sum[2], sum[3]);
  // Add the results
  sum[0] = vec_add(sum[0], sum[1]);
  return sum[0];
}

inline float ei_predux(const vector float& a)
{
  vector float b, sum;
  b = (vector float)vec_sl((vector unsigned char)a, vec_splat_u8(8));
  sum = vec_add(a, b);
  b = (vector float)vec_sl((vector unsigned char)a, vec_splat_u8(4));
  sum = vec_add(a, b);
  return ei_pfirst(sum);
}

inline vector int  ei_preduxp(const vector int* vecs)
{
  vector int v[4], sum[4];

  // It's easier and faster to transpose then add as columns
  // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
  // Do the transpose, first set of moves
  v[0] = vec_mergeh(vecs[0], vecs[2]);
  v[1] = vec_mergel(vecs[0], vecs[2]);
  v[2] = vec_mergeh(vecs[1], vecs[3]);
  v[3] = vec_mergel(vecs[1], vecs[3]);
  // Get the resulting vectors
  sum[0] = vec_mergeh(v[0], v[2]);
  sum[1] = vec_mergel(v[0], v[2]);
  sum[2] = vec_mergeh(v[1], v[3]);
  sum[3] = vec_mergel(v[1], v[3]);

  // Now do the summation:
  // Lines 0+1
  sum[0] = vec_add(sum[0], sum[1]);
  // Lines 2+3
  sum[1] = vec_add(sum[2], sum[3]);
  // Add the results
  sum[0] = vec_add(sum[0], sum[1]);
  return sum[0];
}

inline int ei_predux(const vector int& a)
{
  vector int sum, v0 = vec_splat_s32(0);
  sum = vec_sums(a, v0);
  sum = vec_sld(sum, v0, 12);
  return ei_pfirst(sum);
}

template<int Offset>
struct ei_palign_impl<Offset, vector float>
{
  inline static void run(vector float& first, const vector float& second)
  {
    first = vec_sld(first, second, Offset*4);
  }
};

template<int Offset>
struct ei_palign_impl<Offset, vector int>
{
  inline static void run(vector int& first, const vector int& second)
  {
    first = vec_sld(first, second, Offset*4);
  }
};

#endif // EIGEN_PACKET_MATH_ALTIVEC_H


Mail converted by MHonArc 2.6.19+ http://listengine.tuxfamily.org/