Re: [eigen] tri1 = tri2*tri1
• To: eigen <eigen@xxxxxxxxxxxxxxxxxxx>
• Subject: Re: [eigen] tri1 = tri2*tri1
• From: Gael Guennebaud <gael.guennebaud@xxxxxxxxx>
• Date: Tue, 23 Sep 2014 09:37:16 +0200
• Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=mime-version:in-reply-to:references:from:date:message-id:subject:to :content-type; bh=93rWXg7WbUaFca6VSQWXA2mxXy4CJNM6nx8SOmP1bs4=; b=Dr4OS5zaMfGRhHttPPgVqCXE7tzqNnvBI2buHvvql8ClASx9KHV/jvfbPTE+R4Hazb KrERGq65TKDYjrqYgC3qIadXMngIy+yQJHC0rpX8ixn2CEh6RvKPGia47ZL665FrpCQm j3uPKnzQPXTwFOUbK020muv+05BCmEFa6U5igXesTi8D2h+26Ei5BYffXABrDAKXXiAw xA4BXo2yTReDcy+SJcRiYOSWBMEStfoY5FEYLQna2Jbkq3w76uwyMQBWHy5YBHOtWZnq JYMhtZmCB25j2UfHVxYgpwyMa80+tvBogSnHii3BCuzfJ2qJg4Cy+80701/vJ1DVoFTf 5/oQ==

I'm afraid there is nothing better at the moment. What are the typical sizes of your matrices?

gael

On Tue, Sep 23, 2014 at 8:45 AM, Sebastian Birk wrote:
Hi,

first, I want to thank Gael for the quick fix of bug 879.
(http://eigen.tuxfamily.org/bz/show_bug.cgi?id=879)

But, I have a follow-up question on that.
What I'm actually computing is
tri1 = tri2*tri1
and currently I use dense square matrices for that with
temp.tri = b*a.tri
a.swap(temp)

Is there a better way to compute this except from implementing the
inplace product on my own?

Sebastian

 Mail converted by MHonArc 2.6.19+ http://listengine.tuxfamily.org/