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Abstract

Maximum likelihood or REML estimates of the parameters in linear mixed-effects
models can be determined using the lmer function in the lme4 package for R. As in
most model-fitting functions, the model is described in an lmer call by a formula, in
this case including both fixed-effects terms and random-effects terms. The formula and
data together determine a numerical representation of the model from which the profiled
deviance or the profiled REML criterion can be evaluated as a function of some of the
model parameters. The appropriate criterion is optimized, using one of the constrained
optimization functions in R, to provide the parameter estimates. We describe the structure
of the model, the steps in evaluating the profiled deviance or REML criterion and the
structure of the S4 class that represents such a model. Sufficient detail is included to allow
specialization of these structures by those who wish to write functions to fit specialized
linear mixed models, such as models incorporating pedigrees or smoothing splines, that
aren’t easily expressible in the formula language used by lmer.

Keywords:˜sparse matrix methods, linear mixed models, penalized least squares, Cholesky
decomposition.

1. Introduction

The lme4 package for R provides functions to fit and analyze linear mixed models (LMMs),
generalized linear mixed models (GLMMs) and nonlinear mixed models (NLMMs). In each of
these names, the term “mixed” or, more fully, “mixed-effects”, denotes a model that incorpo-
rates both fixed-effects terms and random-effects terms in a linear predictor expression from
which the conditional mean of the response can be evaluated. In this paper we describe the
formulation and representation of linear and generalized linear mixed models. The techniques
used for nonlinear mixed models will be described separately.

Just as a linear model can be described in terms of the distribution of Y, the vector-valued
random variable whose observed value is yobs, the observed response vector, a linear mixed
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model can be described by the distribution of two vector-valued random variables: Y, the
response and B, the vector of random effects. In a linear model the distribution of Y is
multivariate normal,

Y ∼ N (Xβ, σ2In), (1)

where n is the dimension of the response vector, In is the identity matrix of size n, β is a
p-dimensional coefficient vector and X is an n × p model matrix. The parameters of the
model are the coefficients, β, and the scale parameter, σ.

In a linear mixed model it is the conditional distribution of Y given B = b that has such a
form,

(Y|B = b) ∼ N (Xβ +Zb, σ2In) (2)

where Z is the n×q model matrix for the q-dimensional vector-valued random effects variable,
B, whose value we are fixing at b. The unconditional distribution of B is also multivariate
normal with mean zero and a parameterized q × q variance-covariance matrix, Σ,

B ∼ N (0,Σ). (3)

As a variance-covariance matrix, Σ must be positive semidefinite. It is convenient to express
the model in terms of a relative covariance factor, Λθ, which is a q × q matrix, depending on
the variance-component parameter, θ, and generating the symmetric q×q variance-covariance
matrix, Σ, according to

Σθ = σ2ΛθΛ
′
θ, (4)

where σ is the same scale factor as in the conditional distribution (2).

Although q, the number of columns in Z and the size of Σθ, can be very large indeed, the
dimension of θ is small, frequently less than 10.

In calls to the lm function for fitting linear models the form of the model matrix X is deter-
mined by the formula and data arguments. The right-hand side of the formula consists of
one or more terms that each generate one or more columns in the model matrix, X. For lmer
the formula language is extended to allow for random-effects terms that generate the model
matrix Z and the mapping from θ to Λθ.

To understand why the formulation in equations 2 and 3 is particularly useful, we first show
that the profiled deviance (negative twice the log-likelihood) and the profiled REML criterion
can be expressed as a function of θ only. Furthermore these criteria can be evaluated quickly
and accurately.

2. Profiling the deviance and the REML criterion

As stated above, θ determines the q × q matrix Λθ which, together with a value of σ2,
determines Var(B) = Σθ = σ2ΛθΛ

′
θ. If we define a spherical1 random effects variable, U ,

with distribution

U ∼ N (0, σ2Iq), (5)

and set

B = ΛθU , (6)

1N (µ, σ2I) distributions are called “spherical” because contours of the probability density are spheres.
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then B will have the desired N (0,Σθ) distribution.

Although it may seem more natural to define U in terms of B we must write the relationship
as in eqn.˜6 because Λθ may be singular. In fact, it is important to allow for Λθ to be
singular because situations where the parameter estimates, θ̂, produce a singular Λ

θ̂
do occur

in practice. And even if the parameter estimates do not correspond to a singular Λθ, it
may be necessary to evaluate the estimation criterion at such values during the course of the
numerical optimization of the criterion.

The model can now be defined in terms of

(Y|U = u) ∼ N (ZΛθu+Xβ, σ2In) (7)

producing the joint density function

fY,U (y,u) = fY|U (y|u) fU (u)

=
exp(− 1

2σ2 ‖y −Xβ −ZΛθu‖2)
(2πσ2)n/2

exp(− 1
2σ2 ‖u‖2)

(2πσ2)q/2

=
exp(−

[
‖y −Xβ −ZΛθu‖2 + ‖u‖2

]
/(2σ2))

(2πσ2)(n+q)/2
.

(8)

The likelihood of the parameters, θ, β and σ2, given the observed data is the value of the
marginal density of Y, evaluated at yobs. That is

L(θ,β, σ2|yobs) =

∫
Rq

fY,U (yobs,u) du. (9)

The integrand of eqn.˜9 is the unscaled conditional density of U given Y = yobs. The condi-
tional density of U given Y = yobs is

fU|Y(u|yobs) =
fY,U (yobs,u)∫
fY,U (yobs,u) du

(10)

which is, up to a scale factor, the joint density, fY,U (yobs,u). The unscaled conditional density
will be, up to a scale factor, a q-dimensional multivariate Gaussian with an integral that is
easily evaluated if we know the mean and variance-covariance of the conditional density.

The conditional mean, µU|Y=yobs , is also the mode of the conditional distribution. Because a
constant factor in a function does not affect the location of the optimum, we can determine the
conditional mode, and hence the conditional mean, by maximizing the unscaled conditional
density. This is in the form of a penalized linear least squares problem,

µU|Y=yobs = arg min
u

(
‖yobs −Xβ −ZΛθu‖2 + ‖u‖2

)
. (11)

2.1. Solving the penalized least squares problem

In the so-called “pseudo-data” approach to penalized least squares problems we write the
objective as a residual sum of squares for an extended response vector and model matrix

‖yobs −Xβ −ZΛθu‖2 + ‖u‖2 =

∥∥∥∥[yobs −Xβ0

]
−
[
ZΛθ

Iq

]
u

∥∥∥∥2 . (12)
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The contribution to the residual sum of squares from the “pseudo” observations appended to
yobs −Xβ, is exactly the penalty term, ‖u‖2.
From eqn.˜12 we can see that the conditional mean satisfies(

Λ′θZ
′ZΛθ + Iq

)
µU|Y=yobs = Λ′θZ

′(yobs −Xβ), (13)

which would be interesting, but not terribly useful, were it not for the fact that we can
determine the solution to eqn.˜13 quickly and accurately, even when q, the size of the system
to solve, is very large indeed. (We have done so in cases where q is in the millions.)

The key to solving eqn.˜13 is the sparse Cholesky factor, Lθ, which is a sparse, lower-triangular
matrix such that

LθL
′
θ = P

(
Λ′θZ

′ZΛθ + Iq
)
P ′, (14)

where P is a permutation matrix representing a fill-reducing permutation˜(Davis 2006, Ch.˜7).

As for most sparse matrix methods, the sparse Cholesky factorization can be split into two
phases: a symbolic phase in which the positions of the non-zero elements in the result are
determined and a numeric phase in which the actual numeric values in these positions are de-
termined. Determining the fill-reducing permutation represented by P is part of the symbolic
phase, which often takes much longer than the numeric phase. During the course of determin-
ing the maximum likelihood or REML estimates of the parameters in a linear mixed-effects
model we may need to evaluate Lθ for many different values of θ, but each evaluation after
the first requires only the numeric phase. Changing θ can change the values of the non-zero
elements in L but does not change their positions. Hence, the symbolic phase must be done
only once.

The Cholesky function in the Matrix package for R performs both the symbolic and numeric
phases of the factorization to produce Lθ from Λ′θZ

′ZΛθ. The resulting object has S4 class
"CHMsuper" or "CHMsimp" depending on whether it is in the supernodal˜(Davis 2006, §˜4.8)
or simplicial form. Both these classes inherit from the virtual class "CHMfactor". Optional
arguments to the Cholesky function control determination of a fill-reducing permutation and
addition of multiple of the identity to the symmetric matrix before factorization. Once the
factor has been determined for the initial value, θ0, it can be updated for new values of θ in
a single call to the update method.

Although the solve method for the "CHMfactor" class has an option to evaluate µU|Y=yobs
directly as the solution to

P ′LθL
′
θPµU|Y=yobs = Λ′θZ

′(y −Xβ). (15)

we will express the solution in two stages:

1. Solve Lcu = PΛ′θZ
′(y −Xβ) for cu.

2. Solve L′PµU|Y=yobs = cu for PµU|Y=yobs and then for µU|Y=yobs = P ′
(
PµU|Y=yobs

)
.

2.2. Evaluating the likelihood

After solving for µU|Y=yobs the exponent in fY,U (yobs,u) can be written

‖yobs −Xβ −ZΛθu‖2 + ‖u‖2 = r2(θ,β) + ‖L′P (u− µU|Y=yobs)‖
2. (16)
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where r2(θ,β) = ‖yobs −Xβ − ZΛθµU|Y=yobs‖
2 + ‖µU|Y=yobs‖

2, is the minimum penalized
residual sum of squares for these values of θ and β.

With expression (16) and the change of variable v = L′P (u − µU|Y=yobs), for which dv =
abs(|L||P |) du, we have

∫ exp
(
−‖L′P (u−µU|Y )‖2

2σ2

)
(2πσ2)q/2

du =

∫ exp
(
−‖v‖2
2σ2

)
(2πσ2)q/2

dv

abs(|L||P |)
=

1

abs(|L||P |)
=

1

|L|
(17)

because abs |P | = 1 (one property of a permutation matrix is |P | = ±1) and |L|, which,
because L is triangular, is the product of its diagonal elements, all of which are positive, is
positive.

Using this expression we can write the deviance (negative twice the log-likelihood) as

−2`(θ,β, σ2|yobs) = −2 logL(θ,β, σ2|yobs) = n log(2πσ2) +
r2(θ,β)

σ2
+ log(|Lθ|2) (18)

Because the dependence of eqn.˜18 on σ2 is straightforward, we can form the conditional
estimate

σ̂2(θ,β) =
r2(θ,β)

n
m (19)

producing the profiled deviance

−2˜̀(θ,β|yobs) = log(|Lθ|2) + n

[
1 + log

(
2πr2(θ,β)

n

)]
(20)

However, observing that eqn.˜20 depends on β only through r2(θ,β) provides a much greater
simplification because it allows us to “profile out” the fixed-effects parameter, β, from the
evaluation of the deviance. The conditional estimate, β̂θ, is the value of β at the solution of
the joint penalized least squares problem

r2θ = min
u,β

(
‖y −Xβ −ZΛθu‖2 + ‖u‖2

)
, (21)

producing the profiled deviance,

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2θ
n

)]
, (22)

which is a function of θ only. Eqn.˜22 is a remarkably compact expression for the deviance.

2.3. Solving the joint penalized least squares problem

The solutions, µU|Y=yobs and β̂θ, of the joint penalized least squares problem (21) satisfy[
Λ′θZ

′ZΛθ + Iq Λ′θZ
′X

X ′ZΛθ X ′X

] [
µU|Y=yobs

β̂θ

]
=

[
Λ′θZ

′yobs
X ′yobs.

]
(23)

As before we will use the sparse Cholesky decomposition producing, Lθ, the sparse Cholesky
factor, and P , the permutation matrix, satisfying LθL

′
θ = P (Λ′θZ

′ZΛθ + I)P ′ and cu, the
solution to Lθcu = PΛ′θZ

′yobs.
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We extend the decomposition with the q × p matrix RZX , the upper triangular p× p matrix
RX , and the p-vector cβ satisfying

LRZX = PΛ′θZ
′X

R′XRX = X ′X −R′ZXRZX

R′Xcβ = X ′yobs −R′ZXcu

so that [
P ′L 0
R′ZX R′X

] [
L′P RZX

0 RX

]
=

[
Λ′θZ

′ZΛθ + I Λ′θZ
′X

X ′ZΛθ X ′X

]
, (24)

and the solutions, µU|Y=yobs and β̂θ, satisfy

RX β̂θ = cβ (25)

L′PµU|Y=yobs = cu −RZX β̂θ. (26)

2.4. The profiled REML criterion

Laird and Ware (1982) show that the criterion to be optimized by the REML estimates can
be expressed as

LR(θ, σ2|yobs) =

∫
L(θ,β, σ2|yobs) dβ. (27)

Because the joint solutions, µU|Y=yobs and β̂θ, to the penalized least squares problem allow
us to express

‖yobs −Xβ −ZΛθu‖2 + ‖u‖2 =

r2θ +
∥∥∥L′P [u− µU|Y=yobs −RZX(β − β̂θ)

]∥∥∥2 +
∥∥∥RX(β − β̂θ)

∥∥∥2 (28)

we can use a change of variable, similar to that in eqn.˜17, to evaluate the profiled REML
criterion. On the deviance scale the criterion can be evaluated as

−2˜̀
R(θ) = log(|L|2) + log(|RX |2) + (n− p)

[
1 + log

(
2πr2θ
n− p

)]
. (29)

The structures in lme4 for representing mixed-models are somewhat more general than is
required for linear mixed models. In the remainder of this section we briefly describe some of
the computational requirements for generalized linear mixed models, to show why these more
general structures are employed.

2.5. Definition of GLMMs

The generalized linear mixed models (GLMMs) that can be fit by the lme4 package pre-
serve the multivariate Gaussian unconditional distribution of the random effects, B (eqn.˜3).
Because most families used for the conditional distribution, Y|B = b, do not incorporate a
separate scale factor, σ, we remove it from the definition of Σ and from the distribution of
the spherical random effects, U . That is

U ∼ N (0, Iq) (30)
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and
Σθ = ΛθΛ

′
θ. (31)

The conditional distributions, Y|B = b and Y|U = u, preserve the properties that the com-
ponents of Y are conditionally independent and that the mean, µY|U=u, depends on u only
through the linear predictor,

η = ZΛθu+Xβ. (32)

The mapping from µY|U=u to η, which is called the link function and written

ZΛθu+Xβ = η = g
(
µY|U=u

)
, (33)

is a diagonal mapping in the sense that there is a scalar function, g, such that the ith com-
ponent of η is g applied to the ith component of µY|U=u. (The name “diagonal” reflects the

fact that the Jacobian matrix, dη
dµ′ , of such a mapping will be diagonal.)

The scalar link function must be invertible over its range. The vector-valued inverse link
function, g−1, will be the scalar inverse link, g−1, applied component-wise to η.

Common forms of the conditional distribution are Bernoulli, for binary responses, binomial
for binary responses that are recorded as the number of trials and the number of successes,
and Poisson, for count data. The combination of a distributional form and a link function is
called a family. For distributional forms in the exponential family there is a canonical link.
For Bernoulli or binomial forms the canonical link is the logit link function

ηi = log

(
µi

1− µi

)
; (34)

for the Poisson distribution the canonical link is the natural logarithm.

The form of the distribution determines the conditional variance, Var(Y|U = u), as a function
of the conditional mean and, possibly, a separate scale factor. (In most cases the conditional
variance is completely determined by the conditional mean.)

The likelihood of the parameters, given the observed data, is now

L(β,θ|yobs) =

∫
Rq

fY,U (yobs,u) du (35)

where, as in the case of linear mixed models, fY,U (yobs,u) is the unscaled conditional density
of U given Y = yobs. The notation here is a bit blurred because, although the joint distribution
of Y and U is always continuous with respect to U , it can be (and often is) discrete with respect
to Y. However, when we condition on the observed value Y = yobs, the resulting function is
continuous with respect to u so the unscaled conditional density is indeed well-defined as a
density, up to a scale factor.

2.6. Determining the conditional mode

As for linear mixed models, we simplify evaluation of the integral (35) by determining the
value, ũβ,θ, that maximizes the unscaled conditional density. When the conditional density,
U|Y = yobs, is multivariate Gaussian, this conditional mode will also be the conditional mean.
However, for most families used in GLMMs, the mode and the mean need not coincide so use
the more general term and call ũβ,θ the conditional mode.
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The iteratively reweighted least squares (IRLS) algorithm is an incredibly efficient method
of determining the maximum likelihood estimates of the coefficients in a generalized linear
model. We extend it to a penalized iteratively reweighted least squares (PIRLS) algorithm for
determining the conditional mode, ũβ,θ. This algorithm has the form

1. Given parameter values, β and θ, and starting estimates, u0, evaluate the linear pre-
dictor, η, the corresponding conditional mean, µY|U=u, and the conditional variance.
Establish the weights as the inverse of the variance. We write these weights in the form
of a diagonal weight matrix, W , although they are stored and manipulated as a vector.

2. Solve the penalized, weighted, nonlinear least squares problem

arg min
u

(∥∥∥W 1/2
(
yobs − µY|U=u

)∥∥∥2 + ‖u‖2
)

(36)

3. Update the weights, W , and check for convergence. If not converged, go to step 2.

We use a Gauss-Newton algorithm with an orthogonality convergence criterion˜(Bates and
Watts 1988, §2.2.3) to solve the penalized, weighted, nonlinear least squares problem in step 2.
At the ith iteration we determine an increment, δi, as the solution to the penalized, weighted,
linear least squares problem

δi = arg min
δ

∥∥∥∥[W 1/2 (yobs − µi)
ui

]
−
[
W 1/2MiZΛθ

Iq

]
u

∥∥∥∥2 (37)

where ui is current value of u, µi is the corresponding conditional mean of Y|U = ui and Mi

is the Jacobian matrix of the vector-valued inverse link, evaluated at µi. That is

Mi =
dµ

dη′

∣∣∣∣
ηi

, (38)

which will be a diagonal matrix so, as for the weights, we store and manipulate the Jacobian
as a vector.

The minimizer, δi, of (37) satisfies

P
(
Λ′θZ

′MiWMiZΛθ + Iq
)
P ′δi = Λ′θZ

′MiW (yobs − µi)− ui (39)

which we solve using the sparse Cholesky factor. At convergence, the factor, Lβ,θ, satisfies

Lβ,θL
′
β,θ = P

(
Λ′θZ

′MWMZΛθ + Iq
)
P ′ (40)

The integrand in the likelihood (35) is approximately a constant times the density of the
N (ũ,LL′) distribution. The Laplace approximation to the deviance is

d(β,θ|y) = dg(yobs,µ(ũ)) + ‖ũ‖2 + log(|L|2) (41)

where dg(yobs,µ(ũ)) is the GLM deviance for yobs and µ(ũ).
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