
The Semantics of the C++ Programming Language

Charles Wallace*

August 31, 1995

1 Introduction

In this chapter we extend the evolving algebra presented in [GH] to give formal operational semantics for
the C++ programming language. The evolving algebra of [GH] is a speci�cation for the C programming
language; here we propose modi�cations to it to accommodate the features of C++. We refer the reader to
[GH] for a description of the C algebra, and to [Gu] for an introduction to evolving algebras. [KR] describes
the ANSI standard for the C language, on which the algebra of [GH] is based. We assume the informal
speci�cation for C++ in [ES] as guidelines for our semantics. Knowledge of C++ will ease comprehension
but is not necessary, as we shall explain the new features of C++ and illustrate their use with examples as
we proceed.

The C++ programming language is designed to be an extension of C, retaining all of C's language
facilities and adding new ones. On a syntactic level, the di�erences between C and C++ consist entirely of
language constructs allowable in C++ but not in C. Our algebra for C++ extends the rules for C in [GH] to
capture the new features of C++. Many C++ features do not require any changes at all to the rules. Such
features a�ect only static information about the program, determined at compile time and never changed
during the running of the program. In addition to proposing changes to the rules, we shall discuss the C++
features which do not require any rule changes and explain how we can handle them.

1.1 Outline

The new features of C++ support the object-oriented programming paradigm. The term object can be de�ned
simply as the instantiation of a type. This approach to programming is a synthesis of several principles.
An object is accessed and modi�ed through a set of operations speci�ed within the de�nition of the object's
type. New types can be de�ned in terms of preexisting types through inheritance. Finally, access to an
object's data is localized through encapsulation.

The features required to implement encapsulation and inheritance are presented in section 2, while those
required to combine type and operation de�nitions are presented in section 3. Section 4 deals with the
features supporting creation and destruction of objects. In sections 5 and 6 we discuss extensions that
are not object-oriented in nature; section 5 concerns overloading and parameterized type de�nitions, and
section 6 covers the remaining extensions.

For the sake of readability, we de�ne a set of macros for commonly used rule expressions. The de�nitions
of these macros appear in A.

1.2 Acknowledgments

I would like to thank Yuri Gurevich for inspiring me to write this chapter and guiding me during its devel-
opment. I would also like to thank Jim Huggins, Solomon Foster and Jon Rossie for their helpful comments.

�Partially supported by NSF grant #029862 and ONR grant #028355. The author's address is: EECS Department, Uni-
versity of Michigan, Ann Arbor, MI 48109-2122. Electronic mail address: wallace@eecs.umich.edu.

1



2 2 CLASS STRUCTURE AND ENCAPSULATION

2 Class structure and encapsulation

The central notion of the object-oriented programming paradigm is the encapsulation of data types and
operations associated with them. Encapsulation ensures that the data stored within an object is accessed
only by the operations associated with the object's type. This localization of access is conducive both to data
security and to good programming style. Encapsulation is achieved in C++ through the class construct,
which de�nes aggregate types similar to struct types in C. A class type combines the components of a
programmer-de�ned data type with the functions and operators to manipulate it. The notion of a class is
introduced in section 2.1. The level of localization of access is achieved by specifying access status for the
components of the type; access status is discussed in section 2.4.

In object-oriented programming, redundant code may be eliminated by allowing one type to inherit the
data structure and operations of another. The inherited structure and operations may then be modi�ed
or extended to suit the new type. Inheritance is called derivation in C++; the features supporting class
derivation are discussed in sections 2.2 and 2.3.

2.1 Classes

C++ introduces a new keyword class which indicates the de�nition of a new type. This is almost identical
in functionality to the C keyword struct. Both de�ne types whose instantiations are contiguous sequences
of ordered �elds (members) in memory; in C++, both may have operations (member functions) associated
with them. The only di�erence between the two is in the default access status assigned to their �elds.1 As we
shall see in section 2.4, access status is itself a C++ extension of a purely syntactic nature; thus we can treat
class types in the same way we treat struct types in the C algebra, with no rule modi�cations necessary.
We hereby adopt C++ terminology: we shall use the term class to refer to both struct and class types and
the term member as a synonym for �eld. In addition, we shall use the term object to refer to a contiguous
area of memory serving as an instantiation of a particular type; in particular, the term class object refers to
an area allocated as an instantiation of a class or struct type.

2.2 Derived classes

In addition to the members included explicitly in its de�nition, a class may inherit the members of a set of
other classes. A class that inherits members is said to be derived; the classes whose members it inherits are
its base classes. The base classes of a derived class are speci�ed in its de�nition. For example, if we de�ne
the class person containing the members name and age:2

// definition of (nonderived) class "person"

class person // (no members inherited)

f char name[25]; // person's name (string)

int age; // person's age (integer)

void printPerson(); g; // function to print person's name and age

we can add the derived classes professor and student:

// definition of derived class "professor"

class professor: person // (inherits members of class "person")

f int salary; // professor's salary (integer)

void printProfessor(); g; // function to print professor's info

// definition of derived class "student"

1The default access status is public for a struct and private for a class type. The default status is assigned to a �eld if
no status is speci�ed.

2In C++, a pair of slash characters (//) indicates the beginning of a one-line comment. Our C++ examples include
comments for clari�cational purposes; the text of these comments should not be confused with C++ code.



2.2 Derived classes 3

class student: person // (inherits members of class "person")

f int year; // student's year (integer)

float GPA; // student's GPA (decimal)

void printStudent(); g; // function to print student's info

Professors and students in the real world are individuals with names and ages, as well as attributes speci�c
to professors and students. The classes professor and student represent this by inheriting the members of
the class person. Both derived classes contain name, age and printPerson, the members of their base class;
in addition, the class professor contains the members salary and printProfessor, while the class student

contains year, GPA and printStudent.
From these two derived classes we can create another derived class, teachingAssistant:

// definition of derived class "teachingAssistant"

class teachingAssistant: professor, student

// (inherits members of classes "professor" and "student")

f professor* worksFor; // professor that TA works for (ptr to "professor" object)

int section; // section that TA teaches (integer)

void printTA(); g; // function to print TA's info

In the real world, a teaching assistant is a single individual with attributes of both a professor and a
student. We represent this via multiple inheritance: class teachingAssistant contains the members of both
professor and student, as well as the members worksFor, section and printTA.

An object of a nonderived class consists of a sequence of members arranged contiguously in memory; the
members are arranged according to the order in which they appear in the class de�nition. An object of a
derived class also consists of a sequence of members; some members are inherited from the base classes, and
some are de�ned in the derived class itself. Unlike nonderived classes, there is no way of determining the
ordering of a derived class' members from the class de�nition. In particular, the relative order of base- and
derived-class members is implementation-dependent; base members may precede derived members or vice
versa.

Nevertheless, the order of members in a derived class is �xed for all objects of the class at compile time.
Hence we do not need to distinguish between derived and nonderived classes in our semantics; a base class
and a class derived from it are distinct elements in the types universe. As with objects of nonderived classes,
accessing a member of a derived-class object simply involves a constant o�set from the memory location of
the object.

While the introduction of derived classes does not require any rule changes, we must point out some
issues regarding pointer casting. Given a class D derived from a class B, a pointer to D can be cast to a
pointer to B; the intended result is a reference to the B portion of the D object. This requires some pointer
arithmetic if the B portion is not the �rst portion of the D object. The B portion lies at some �xed o�set
from the initial address of the D object, so this must be added to the original address before casting. For
example, assume that the following pointer variables are de�ned:3

profPtr = new professor;

personPtr = (person*) profPtr;

Assume that professor objects are arranged with their salary members �rst. Then for ProfPtr to be
cast to a pointer to person, in the second de�nition, its value must be incremented by the size of the salary

member.
Casting in the opposite direction is also possible; a pointer to B can be cast to a pointer to D. The intended

result is a reference to a D object in which the B object is embedded. In this case, the o�set from the D object
to the B object is decremented from the pointer value before casting.

This implicit pointer arithmetic is not performed if the value of the pointer before casting is 0. Thus
both pointers would be initialized to 0 in the following de�nitions:

3Casting from a derived-class pointer to a base-class pointer is done implicitly; for clarity, we perform the casting explicitly.



4 2 CLASS STRUCTURE AND ENCAPSULATION

profPtr = 0;

personPtr = (person*) profPtr;

To account for these special cases, we make the following assumptions. For any casting task from a
base-class to a derived-class pointer or vice versa, we add a conditional expression task which tests whether
the pointer value is 0. If the result is positive, control passes to a task which simply returns 0. Otherwise,
control passes to a pointer addition or pointer subtraction task which adds the appropriate constant o�set
to the pointer value.

2.3 Virtual base classes

A base class may be designated as virtual; this a�ects the way in which its members are inherited. Consider
our class teachingAssistant, which inherits members from both professor and student classes. Since both
professor and student classes in turn inherit members from the class person, teachingAssistant inherits
person's members from two bases. For the class teachingAssistant as it is currently de�ned, this means
that the class contains two disjoint sets of person members. Each object of this class will have two name

members and two age members, conceivably with di�erent values. For certain applications this is desirable,4

but if we wish to give objects of type teachingAssistant a single name and age value, our de�nition of
teachingAssistant as it stands is unsatisfactory.

To remedy this problem, we de�ne class person as a virtual class. De�ning a base class B as virtual within
the de�nition of D ensures that any class derived from D will contain only one set of B's members. We modify
our de�nitions of professor and student:

// modified definitions of classes "professor" and "student", making base class "person" virtual

class professor: virtual person

f int salary;

void printProfessor(); g;

class student: virtual person

f int year;

float GPA;

void printStudent(); g;

With person de�ned as a virtual base class, the class teachingAssistant still inherits the members of
person, but objects of class teachingAssistant will contain only a single name member and a single age

member.
Virtual base classes do not require any changes to the algebra. The virtual status of a base class a�ects

only static information about a class subsequently derived from it: namely, the sequence of members it
contains. As the number and types of a class' members are determined at compile time, and the e�ect of a
class' virtual status extends only to this static information, the introduction of virtual base classes does not
require any changes to the algebra rules.

4For an example in which duplication of inherited members is desirable, consider a derived class representing a research
project between a professor and a student:

// definition of class "researchProject"

class researchProject: professor, student

f char topic[25]; // research topic

int funding; g; // amount of funding for research

This class contains information representing a professor and a student, two distinct people. Here it is preferable to have
separate copies of the person members; the name and age members corresponding to the professor and student will have
distinct values. Thus the class person should be de�ned as nonvirtual in this case.



2.4 Access control 5

2.4 Access control

Class members may be restricted in terms of their accessibility, i.e., the set of functions which may access
them. A private member may only be accessed by a member function of the class in which it is de�ned; a
function that is not a member of any class or is the member of a di�erent class, even a derived class which
inherits the private member, may not refer to it. A protected member is less restricted: it may be accessed
by a member function of any class in which it is de�ned or inherited. A public member may be accessed by
any function, regardless of the function's class membership. For example, let us assign private status to the
name and age members of class person:

// modified definition of class "person," specifying access status

virtual class person

f private:

char name[25];

int age;

public:

void printPerson(); g;

Since name, age and printPerson are de�ned in the class person, the private status of name and age does
not prevent printPerson from accessing these members:5

// definition of "printPerson" function for class "person"

person::printPerson()

// print the "name" and "age" members of the "person" object

f output("name:", name); // note reference to "name"

output("age:", age); g // note reference to "age"

On the other hand, printProfessor is not de�ned in the same class as name or age, so it cannot access
these members. If we had assigned name and age protected status, printProfessor would have been able to
access them, as printProfessor's class professor is a derived class containing name and age members.

Access to a class' private members may be granted to nonmember functions by giving them friend status
within the class de�nition. For example, we can de�ne a global version of our printPerson function that is
not a member of the person class:

// definition of global function "globalPrintPerson"

void globalPrintPerson(person p)

f output("name:", p.name); // reference to "name"

output("age:", p.age); g // reference to "age"

For the nonmember function globalPrintPerson to access the private members name and age, we must
declare it as a friend to person within the class de�nition:

// modified definition of class "person,"

// allowing function "globalPrintPerson" to access private members

virtual class person

f private:

char name[25];

int age;

public:

void printPerson(); // member function

friend void globalPrintPerson(person); g; // global function

5In this and following examples, we assume that the function output simply takes a sequence of arguments, of any number,
and sends their values to an output device. We do not de�ne the function explicitly.



6 2 CLASS STRUCTURE AND ENCAPSULATION

Access status is a purely syntactic feature; since each member's status is assigned in the de�nition of the
class and cannot be changed, access restrictions can be enforced at compile time and need not be enforced
later. A member's status has no further e�ect on either the member itself or the functions which access it,
so no algebra rules need to be changed to accommodate this feature.

2.5 Scope resolution operator

In both C and C++, names may di�er in their scope. In C, a name may be either global or local; in C++,
the situation is more complex, as a nonglobal name may have scope over any of a number of nested classes.
The possibility of overlapping scopes leads to potential ambiguity. For example, let us add a member course
to the class professor; course will itself be a class, containing the members name, studentsEnrolled and
print:

// modified definition of class "professor," with member "course"

class professor: private person

f private:

int salary;

class course // course that professor teaches

f private:

char name[25]; // name of course (string)

int studentsEnrolled; // number of students (integer)

public:

void print(); g; // function to print info about course

public:

void nonvirtualPrint();

void virtualPrint(); g;

The class professor contains two instances of the member name name: one inherited from the base class
person, and one nested inside the class course. Both instances have scope over the nested class course. If
we introduce a global variable name,

// definition of global variable "name"

char name[25]; // name of university

we now have three identical names with scope over the class course.6 The member function print of class
course refers to name:

// definition of "print" function for class "course"

void professor::course::print()

f output("course name:", name); // reference to "name"

output("students enrolled:", studentsEnrolled); g

The identi�er name here could conceivably refer to two possible variables: the member name de�ned inside
course or the global variable name. In such a case, the more local referent of name, i.e., the member of
course, is selected. The global variable name is said to be hidden. Note that the member name de�ned inside
professor is not a possible referent; within a member function body, only members of the function's class
may be referred to by a simple identi�er. Given the set of C++ features we have considered so far, there is
no way to refer to either the global variable or the member of professor from within the class course.

The scope resolution operator :: in its unary form allows for references to hidden global variables; the
single operand is the name of a global variable, and the expression refers to the global variable of that
name. Its binary form allows for references to members of enclosing classes. The left-hand operand is the

6Of course, the confusion here could be eliminated by choosing more descriptive labels for the three name variables.



7

name of an enclosing class, and the right-hand operand is the name of a member of the enclosing class;
the expression refers to the member of the given name within the enclosing class of the given name. For
example, the function print within course can refer to the global variable name using the unary form of the
scope resolution operator, and to the name member of person via the binary form:

// modified definition of "print" function for class "course," using scope resolution operator

professor::course::print()

f output("university:", ::name); // global variable

output("professor:", professor::name); // "professor" member

output("course name:", name); // "course" member

output("students enrolled:", studentsEnrolled); g

Neither form of the scope resolution operator requires changes to the algebra. An expression consisting
of an variable name preceded by the unary operator refers to the global variable of that name; such an
expression corresponds to a simple identi�er task. An expression involving the binary form of the operator
corresponds to a data-member task, which we discuss in sections 3.1 and 3.2. We treat such expressions as
class-member tasks, referring to a member within an object and involving a statically determined o�set to
the member. The assumptions made in section 3.2 to handle data-member tasks will also handle binary
scope resolution expressions.

3 Programmer-de�ned class operations

In object-oriented programming, the operations that access a given data type are included as part of the
de�nition of the type. As C does not allow functions to be included as part of a type de�nition, C++
introduces this possibility for class types. This is discussed in sections 3.1 and 3.2. Functions associated
with a class may be de�nition as virtual. If a function is so de�ned, references to it rely on dynamic rather
than static type resolution. The features supporting virtual functions are presented in sections 3.3 and 3.4.

3.1 Member functions

The �rst extension requiring a change in the algebra is the ability of classes to have functions as members.
This extension involves changes to the algebra because the way in which member functions are accessed does
not parallel the way in which other members are accessed. Unlike members of other types, referred to as
data members, a member function does not occupy a memory area at some predetermined o�set from the
starting location of its class; thus our rule for class members as it stands is incapable of handling a reference
to a member function.

The value returned by a member function expression must be the starting address of the function. For
nonvirtual functions,7 this address is statically determined and cannot be changed. Thus a nonvirtual
member function expression corresponds to a particular, unchangeable function address. We de�ne a partial
function FunLoc : tasks ! addresses which maps a member function expression to the corresponding
starting address of the member function. To distinguish between member functions and data members, we
add the values data and function to the tags universe, and a function MemberStatus : tasks ! tags to
determine whether a given member expression is a member function or a data member. We change the
task-type tag struct-reference to class-member, in keeping with our new terminology. Our new rule is shown
in Fig. 1.

Inside the body of a member function, a reference to a member of the function's class may be made
simply by an expression consisting of the member's name; no class name is necessary. Consider our example
in section 2.4: within the body of the member function printPerson, the class' name and age members are

7The situation is somewhat more complicated for virtual functions, which we discuss in section 3.4.



8 3 PROGRAMMER-DEFINED CLASS OPERATIONS

if TaskType (CurTask) = class-member then
if ValueMode (CurTask) = lvalue then

ReportValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask))
elseifValueMode (CurTask) = rvalue then

if MemberStatus (CurTask) = data then
ReportValue (ObjValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask)))

elseif MemberStatus (CurTask) = function then
ReportValue (FunLoc (CurTask))

endif
endif
Moveto (NextTask (CurTask))

endif

Figure 1: Transition rule for class member expressions.

referred to simply as \name" and \age." This is possible because name, age and printPerson are members of
the same class.

To handle such expressions within member functions, we shall treat them in the same way as explicit class-
member expressions; an expression of this form will correspond to a class-member task. As the left operand
is missing from these implicit class-member expressions, the question arises as to what the left-operand value
as de�ned by OnlyV alue should be. This is addressed in the next section.

3.2 Implicit this parameters

Every member function has a hidden argument that is not included explicitly in either the function's list of
parameter declarations or the list of argument expressions in a call to the function. This hidden argument's
value is always the address of the class object of which the function is a member. Thus in our example in
section 2.4, the function person::printPerson is explicitly de�ned as a nullary function, and no arguments
are supplied when it is called; nevertheless, it is in fact a one-place function whose sole argument is a pointer
to the class object.

To support this in our algebra, we assume that each member function has an implicit class-pointer
parameter declaration in addition to those explicitly de�ned by the programmer. We wish to be able
to distinguish this declaration as that of the implicit class-pointer parameter; we do this by adding the
partial function IsImplicitParm : tasks! ftrue; falseg. We also add the partial function ImplicitParm :
stack ! tasks, which returns the declaration task of the implicit class pointer for a given level of the stack.
When the implicit class-pointer parameter declaration is encountered, we change the ImplicitParm function.
Our new rule for parameter declarations is shown in Fig. 2.

if TaskType (CurTask) = parameter-declaration then
DoAssign (NewMemory (CurTask), ParamValue (CurTask, StackTop), ValueType (CurTask))
OnlyValue (CurTask, StackTop) := NewMemory (CurTask)
if IsImplicitParm (CurTask) = true then

ImplicitParm (StackTop) := CurTask
ENDIF

Figure 2: Transition rule for parameter declarations.

We also assume that each call to a member function has an expression task returning the address of



3.3 Object type 9

the function's class.8 We introduce the macro ThisP tr to express the value of the implicit class-pointer
parameter. Within a member function, the value of the implicit parameter can be accessed via an expression
consisting of the keyword this. To handle this new type of expression, we introduce a tag, this, and a
corresponding rule. The de�nition of ThisP tr and the rule for this expressions are shown in Fig. 3.

macroThisPtr: MemoryValue (OnlyValue (ImplicitParm (StackTop), StackTop),
ValueType (ImplicitParm(StackTop)))

if TaskType (CurTask) = this then
ReportValue (ThisPtr)
Moveto (NextTask (CurTask))

endif

Figure 3: Macro ThisP tr; transition rule for this expressions.

With the ThisP tr macro returning the implicit class pointer parameter value, we are now able to handle
a member function's references to members of its own class. For a nonfunction member, the value to return
for such a reference is the memory address value of the implicit argument o�set by some value determined
by ConstV al. For a reference to a function member, the value to return is the function's memory location,
determined via FunLoc. Assuming that we treat class-member expressions within a member function as
class-member tasks, we simply de�ne the task's left-operand value to be the value ThisP tr. Thus the implicit
class-member expression name in our example in section 2.4 will be equivalent to the explicit class-member
expression this->name.

3.3 Object type

In C++, each class object has a particular type associated with it. If the object has been allocated as the
memory location for a variable of a certain class type, the object's type will simply be the predetermined
static type of the variable. A class object's type may also correspond to the static type of a pointer variable
pointing to it, but this is not necessarily the case. For example, assume the following variables are de�ned
using our person, professor and student classes:

person personObject;

professor profObject;

student studentObject;

Assume that personPtr is de�ned as a pointer to an object of class person:

person* personPtr;

The object types of personObject, profObject and studentObject are �xed at the time of their de�nition:
the object type of personObject is person, the object type of profObject is professor, and the object type of
studentObject is student. The value of personPtr can be changed to point to any of the objects de�ned by
personObject, profObject or studentObject:

personPtr = (person*) &personObject; // object type is "person"

personPtr = (person*) &profObject; // object type is "professor"

personPtr = (person*) &studentObject; // object type is "student"

8If a base-class function is called with a pointer to a derived class as its this pointer, an o�set must be added to the pointer
to point to the embedded base-class object, and the result must be cast to a base-class pointer. We assume that the appropriate
pointer-addition and casting tasks are included.



10 3 PROGRAMMER-DEFINED CLASS OPERATIONS

A class object's type is information stored in the object itself and determined at the time of initialization
of the object. Thus while a variable can point to objects of di�erent types, the object type of a class object
cannot change. To keep track of a class object's type, we simply associate a type with the object's location
in memory. We de�ne a partial function ObjType : addresses! types, which returns the type of the object
at the given memory location. When a new class object is initialized, either by a variable declaration or
by use of the new operator,9 the ObjType function is changed to reect the type of the object at the new
address.10

We add a new task type, object-setup; tasks of this type assign object type to newly created objects.
After any class-object creation via a declaration or new-expression task, object-setup tasks, arranged in the
order described above, assign object types to the object and its class subobjects. The o�set at which to
assign the object type is determined by ConstV al, and the type to assign is determined by V alueType. The
rule for object-setup tasks is shown in Fig. 4.

if TaskType (CurTask) = object-setup then
if PointerType (Decl (CurTask)) = true then

ObjectType (MemoryValue (OnlyValue (Decl (CurTask)), ValueType (CurTask))
+ ConstVal (CurTask)) := ValueType (CurTask)

else
ObjectType (OnlyValue (Decl (CurTask)) + ConstVal (CurTask)) := ValueType (CurTask)

endif
Moveto (NextTask (CurTask))

endif

Figure 4: Transition rule for object type assignment tasks.

3.4 Virtual functions

The importance of object type is manifested in its interaction with virtual functions. A member function may
be labeled virtual by placing the keyword virtual before the de�nition of the function. A function de�ned
as virtual for a base class is also virtual for all classes derived from the base class, even if the function is
rede�ned in a derived class. In the case where a member function is originally de�ned in a base class and
rede�ned in a derived class, an access of the member name may refer to either the base-class version or the
derived-class version of the function; the di�erence between a virtual and a nonvirtual function is in the
way in which the correct version is chosen. A nonvirtual function is determined at compile time, based on
the static type associated with the function's class; for a virtual function, the choice is based on the type
associated with the class object.

As an example, let us add member functions to the classes person and professor. In place of the functions
printPerson, globalPrintPerson and printProfessor, we add the functions virtualPrint and nonvirtualPrint

to person and the function virtualPrint to professor:

// modified definition of class "person," with new member functions

class person

f private:

9The new operator is discussed in section 4.1.
10As a class object may itself contain class objects, each of which must be assigned a type, a single variable declaration or

new expression may require several object-type assignments. These assignments proceed in a speci�c order: �rst the base-class
subobjects are initialized in declaration order, then the member subobjects are initialized in declaration order, and �nally the
enclosing object itself is initialized. A class object and one of its class subobjects may have the same starting address; in this
case, the object type assigned at this address is a combination of both classes. We assume that any such combinations of types
needed are included in the types universe.



3.4 Virtual functions 11

char name[25];

int age;

public:

virtual void virtualPrint(); // virtual print function

void nonvirtualPrint(); g; // nonvirtual print function

// modified definition of class "professor," with new member function

class professor: virtual person

f private:

int salary;

public:

virtual void virtualPrint(); g; // virtual print function

Each function simply prints the member values of its class:

// definition of nonvirtual print function for class "person"

void person::nonvirtualPrint()

f output("Nonvirtual print function for 'person' object");

output("name:", name); // print "name" member

output("age:", age); g // print "age" member

// definition of virtual print function for class "person"

void person::virtualPrint()

f output("Virtual print function for 'person' object");

output("name:", name); // print "name" member

output("age:", age); g // print "age" member

// definition of virtual print function for class "professor"

void professor::virtualPrint()

f output("Virtual print function for 'professor' object");

person::nonvirtualPrint(); // print function for class "person"

output("salary:", salary); g // print "salary" member

We de�ne a variable profObject, of type professor; this initializes an object of type professor. A variable
of type person* may then be assigned to point to this object:

// definition of variable "personPtr"

person* personPtr = &profObject; // points to "profObject"

According to the static type of the variable personPtr, the type of the object it points to is person, but
the object type of personPtr's dereferencing is professor. The function calls personPtr->nonvirtualPrint()
and personPtr->virtualPrint() will now exhibit di�erent behaviors. Since nonvirtualPrint is a nonvirtual
function, personPtr->nonvirtualPrint() calls the version of nonvirtualPrint according to the static type of
personPtr's dereferencing, namely person. The resulting output will be

Nonvirtual print function for "person" object

name: Hazel Motes age: 45

On the other hand, virtualPrint is a virtual function, so personPtr->virtualPrint() calls the version of
virtualPrint as de�ned by the object type of personPtr's dereferencing, namely professor. The output will
be

Virtual print function for "professor" object

name: Hazel Motes age: 45 salary: 50000



12 4 OBJECT CREATION AND DESTRUCTION

Virtual functions require a change to the rule for class member expressions. To determine the correct
address of a virtual function, we rede�ne FunLoc as a binary function: tasks � types ! addresses, which
determines the address for a given member function identi�er and object type. In the case of a nonvirtual
function, FunLoc always returns the same function starting address, regardless of the type argument; in the
case of a virtual function, the starting address varies depending on the object type supplied. Our new rule
is shown in Fig. 5.

if TaskType (CurTask) = class-member then
if ValueMode (CurTask) = lvalue then

ReportValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask))
elseifValueMode (CurTask) = rvalue then

if MemberStatus (CurTask) = data then
ReportValue (ObjValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask)))

elseif MemberStatus (CurTask) = function then
ReportValue (FunLoc (CurTask, ObjType (OnlyValue (CurTask, StackTop))))

endif
endif
Moveto (NextTask (CurTask))

endif

Figure 5: Transition rule for class member expressions.

4 Object creation and destruction

C++ introduces convenient mechanisms for creating and destroying objects. The operator new allocates
memory for a new object, while the operator delete deallocates memory associated with an object. These
operators are covered in sections 4.1 and 4.2 respectively. In addition, the programmer may de�ne functions
to be invoked implicitlywhen an object is created or destroyed. Discussion of these constructor and destructor
functions appears in sections 4.3 and 4.4 respectively.

4.1 The new operator

C++ introduces an operator new for dynamic object creation. This operator takes a type name as an operand,
allocates a region of memory whose size corresponds to that of the indicated type, and returns the memory
location of this newly allocated memory. In our object terminology, it creates an object of a given type
and returns a pointer value to it. For example, the expression new person allocates enough space for the
name and age members of a person object and returns a pointer value to this newly allocated space. Memory
allocation is accomplished by a call to the global function operator new; if the object being allocated contains
a member function operator new, the member function is called instead.

The new operator introduces a new task type tag, new-object, to the universe of tags. As with variable
declarations, an initializing expression, if one exists, is evaluated; the evaluation task for this initializer is
determined by the function Initializer. We introduce a partial function Allocator : tasks ! tasks, which
maps each expression involving the new operator to a task which calls the appropriate version of operator
new. This function call changes the OnlyV alue function, setting the new expression's value to a new memory
location. Once a location has been established for the new object, it is returned as the value of the new

expression; if an initializer is provided, the object is assigned its value. Our new rule is shown in Fig. 6.



4.2 The delete operator 13

if TaskType (CurTask) = new-object then
if De�ned (Initializer (CurTask)) andUnde�ned (RightValue (CurTask, StackTop)) then

Moveto (Initializer (CurTask))
elseif Unde�ned (OnlyValue (CurTask, StackTop)) then

Moveto (Allocator (CurTask))
else

ReportValue (OnlyValue (CurTask, StackTop))
if De�ned (Initializer (CurTask)) then

DoAssign (OnlyValue (CurTask), RightValue (CurTask, StackTop), PointsToType (CurTask))
else

Moveto (NextTask (CurTask))
ENDIF

Figure 6: Transition rule for new-operator expressions.

4.2 The delete operator

The delete operator reverses the e�ects of the new operator: given the address of an object as an operand, it
deallocates the memory allocated for the object so that it can be reused. For example, given the de�nition

person* personPtr = new person;

the expression delete person deallocates the memory allocated by the new operator; the pointer personPtr
no longer points to an object. Memory deallocation is accomplished by calling the global function operator

delete; if the deallocated object contains a member function of this name, its member function will be called.
An expression with the delete operator returns a value of type void. This feature can be incorporated without
changing the algebra; for every delete expression task, we assume that a function invocation task calling the
appropriate version of operator delete is added.

4.3 Constructors

The programmer may de�ne special member functions called constructors to be invoked when an object of
a class is created. Constructors are commonly used to initialize newly created objects with default values.
It is important to note that a constructor function does not actually create a new object in the sense of
allocating new memory to be used as a class object. The name of a constructor function member within a
class is simply the name of the class itself; like other function names, it may be overloaded. To illustrate,
we add two constructor functions to our class person:

// modified definition of class "person" with constructor functions

class person

f private:

char name[25];

int age;

public:

person(); // "default" constructor: requires no argument

person(const char*, int); // constructor taking string and int

virtual void virtualPrint();

void nonvirtualPrint(); g;

The �rst constructor function takes no arguments; an invocation of this function �lls in the name and age

members with default values:11

11The strcpy function, found in the <string.h> library, takes two string pointers as arguments and copies the �rst argu-
ment's string to that of the second argument.



14 4 OBJECT CREATION AND DESTRUCTION

// definition of default constructor for class "person"

person::person()

f strcpy(name, ""); // set "name" member to null string

age = -1; g // set "age" member to invalid value

The second constructor function takes two arguments and �lls in the name and age members with these
argument values:

// definition of binary constructor function for class "person"

person::person(const char* n, int a)

f strcpy(name, n); // copies contents of string "n" to "name" member

age = a; g

A constructor may be invoked when an automatic or static variable is declared; in the case of a static
variable, it is invoked only the �rst time the declaration is encountered. For example, the de�nitions

person p1(), p2("Lily Hawks", 30);

initialize variable p1 with the �rst constructor function and variable p2 with the second constructor
function. When a constructor function with no arguments, a so-called default constructor, is de�ned, it may
be invoked without the use of argument parentheses; thus the de�nition of p1 above is equivalent to

person p1;

Alternatively, the declaration of a variable may initialize the variable's new object in the standard C
fashion, via direct assignment; in this case, the constructor function is not called.

A constructor function may also be called when a new object is allocated using the new operator. For
example, the expression new person("Hoover Shoats", 68) allocates memory for a new object of class person
and initializes it by calling the binary constructor function for person. Finally, a constructor may be called
explicitly in the standard form for functions. Here, the result is that a temporary object is created and the
constructor function called for this object.

Constructor functions do not require changes to our rules. We simply assume that function invocation
tasks calling the appropriate constructor functions follow a declaration or new-expression task, in the order
speci�ed in section 3.3. There is no order speci�ed between object setup and constructor invocation tasks.
In the case of an explicit contructor function call, we assume that a declaration task precedes the constructor
function invocation to create a temporary object.

4.4 Destructors

Just as constructor functions can be de�ned to handle initialization of new class objects, special member
functions may also be de�ned to perform certain actions when a class object is destroyed. These functions,
called destructor functions, are invoked implicitly by a variable going out of scope or by use of the delete

operator, or explicitly by a function call. As an example, let us add a destructor function to the class person:

// modified definition of class "person," with destructor function

class person

f private:

char name[25];

int age;

public:

person();

person(const char*, int);

~person(); // destructor function



15

virtual void virtualPrint();

void nonvirtualPrint(); g;

We also add a global variable totalPeople to keep track of the number of allocated person objects:

int totalPeople = 0;

This global variable can be incremented and decremented in the class' constructor and destructor
functions; then once the class is de�ned, the programmer need not perform any explicit incrementing or
decrementing outside the class. We modify our constructor functions, adding a statement incrementing
totalPeople:

// modified definition of default constructor for class "person,"

// including increment of global object counter

person::person()

f strcpy(name, "");

age = -1;

totalPeople++; g // counter incremented

// modified definition of binary constructor function

// for class "person," including increment of global object counter

person::person(const char* n, int a)

f strcpy(name, n);

age = a;

totalPeople++; g // counter incremented

Now each time a new object of class person is created, the counter totalPeople is incremented. The
opposite action is performed by the destructor function: when an object is destroyed, the counter is decre-
mented:

// definition of destructor function for class "person"

person::~person() f totalPeople--; g // counter decremented

As mentioned above, the destructor function is called implicitly when a variable goes out of scope. For
a local automatic variable, this is the point at which the function in which it is declared ends. For a static
or global automatic variable, it is the end of the program. The destructor is also called implicitly when the
delete operator is used to deallocate a class object. Finally, the programmer may call the destructor member
function explicitly: the function name is simply the class name preceded by a tilde. Thus the expression
p1.~person() will call the destructor function and decrement the global counter.

Explicit calls to destructor functions are handled by the existing rule for function invocations. However, as
not all destructor-function calls are explicit in the program code, we must make them so in the representation
of the program. We simply add a destructor function call task at each point where a class variable with a
destructor function de�ned goes out of scope: this will be either at the end of a function or the end of the
program, depending on the variable type. We shall refer to the sequence of implicit destructor function calls
followed by a return task at the end of a function or program as a return sequence. We also add a destructor
function invocation task before each call to operator delete.

5 Overloading and parameterized types

C++ allows function names and operators to be overloaded. Overloading is a loosening of the restrictions
on associating names with functions. While in C a name may refer to at most one function, in C++ a



16 5 OVERLOADING AND PARAMETERIZED TYPES

name may refer to a family of functions. The particular function referred to by an instance of a name is
determined by the types of the arguments and return type associated with the name instance. Overloading
allows the programmer to refer to conceptually similar functions with the same name. We discuss overloading
in sections 5.1 and 5.2.

Similarly, the template mechanism allows the programmer to de�ne a family of conceptually similar types
through a parameterized type de�nition. An instantiation of a type from the family is attained by supplying
values for the parameters. As with overloading of functions and operators, this allows the programmer to
refer to similarly de�ned types with a single name. Template de�nitions are discussed in section 5.3.

5.1 Function overloading and default arguments

An overloaded function name refers to more than one function declaration within the same scope. When
an overloaded name is used in an expression, it refers to a particular function; the function it refers to
is determined by matching the actual arguments of the function reference with the formal arguments of
a function declaration.12 As an example, let us add an overloaded function monthlySalary as a friend to
the professor class de�ned in section 2.2. Within the class de�nition we de�ne two functions, both named
monthlySalary: the �rst monthlySalary function takes a single int argument, while the second monthlySalary

function takes two int arguments. The �rst monthlySalary function calculates a monthly salary for the
professor object by dividing its yearlySalary argument by 12:

// definition of unary "monthlySalary" function

int monthlySalary(int yearlySalary) f return yearlySalary / 12; g

The second monthlySalary function divides its integer yearlySalary argument by its integer months argu-
ment:

// definition of binary "monthlySalary" function

int monthlySalary(int yearlySalary, months)

f return yearlySalary / months; g

A subsequent function call using the name monthlySalary is disambiguated by considering the arguments
supplied in the function call. An expression monthlySalary(40000) is a call to the �rst function declaration,
as its arguments match the formal arguments of the �rst declaration exactly. Likewise, an expression
monthlySalary(30000, 9) is a call to the function de�ned in the second declaration.

Function overloading does not require any changes to the algebra because the mapping between function
references and function declarations is static. When an overloaded function name is used, the function it
refers to is determined by the types of its arguments; these types are determined at compile time, so the
referent of the overloaded name is as well. For any expression task T consisting of an overloaded function
name, we determine the best match for the function reference and assign Decl(T ) the declaration task of
this best match.

Another C++ addition, related to function overloading, is the ability to supply default values for the
formal arguments of a function. A function with a default value speci�ed for one of its arguments may be
called either with or without a value for that argument; if no actual argument is supplied, the default value
is used. For instance, rather than de�ning separate unary and binary monthlySalary functions, we can de�ne
the function once as a binary function and give the months argument a default value of 12:

// modified definition of binary "monthlySalary" function,

// with default value for "months" argument

12An exact match between actual and formal arguments is not necessary; there are rules used at compile time to determine
the best match when no exact match exists. For the sake of simplicity, we shall only consider examples where formal and actual
arguments match exactly.



5.2 Operator overloading 17

int monthlySalary(int yearlySalary, months = 12)

f return yearlySalary / months; g

The result is identical to that of de�ning unary and binary monthlySalary functions. The function may
be called with two arguments, in which case the formal argument months receives the value of the second
argument; it may also be called with one argument, in which case months receives the default value 12.

There is no standard method for implementing default argument values; however, none of the di�erent
possible approaches require changes to the algebra. Functions with default argument values can be thought
of as special cases of function overloading. Thus the above de�nition of monthlySalary would be equivalent
to the following de�nitions:

// binary "monthlySalary" function

int monthlySalary(int yearlySalary, months)

f return yearlySalary / months; g

// unary "monthlySalary" function

int monthlySalary(int yearlySalary)

f int months = 12;

return yearlySalary / months; g

An alternate approach to implementing default arguments is to de�ne a single function and modify
calls to the function, supplying default values as actual arguments if need be. For instance, our de�-
nition of monthlySalary above would instantiate a single binary function, and a unary function call like
monthlySalary(40000) would be changed to monthlySalary(40000, 12).

The overloaded-function approach requires no changes to the algebra, as we have seen that function
overloading is a purely syntactic feature. The single-function approach does not even require function
overloading; it simply involves calls to a nonoverloaded function. Thus our algebra as it stands is able to
handle default argument values, regardless of their implementation.

5.2 Operator overloading

Operators may also be overloaded. The user may de�ne an operator function for a particular operator,
taking at least one class object as an argument. When an operator is used with no class objects as operands,
the result is the standard action for the operator as de�ned in C; when used with a class object as one of
its operands, the result is a call to the operator function de�ned for that class. Operator functions taking
di�erent argument types may be de�ned for the same operator. As with overloaded functions, the operator
function for a given occurrence of an operator is determined by matching the actual operands with the formal
arguments of the operator functions.

As an example, we shall overload the relational operator > to accommodate our class student. Within
the class de�nition, we declare two friend functions, both denoted by operator>:

// modified definition of class "student,"

// allowing operator functions to access private members

class student: private person

f private:

int year;

float GPA;

public:

void printStudent();

friend int operator>(student, student); // operator >

friend int operator>(student, int); g; // operator >



18 5 OVERLOADING AND PARAMETERIZED TYPES

Both operator functions take a student class object as a left operand; the �rst declaration de�nes a
function taking a student object as a right operand, while the second de�nes a function taking an int object
as a right operand. We de�ne the �rst version of operator> so as to return a \true" value if the year member
of the left operand is greater than that of the right operand:13

// definition of operator function > for (student, student) operands

int operator>(student s1, s2) f return s1.year > s2.year; g

We de�ne the second version of the operator function so as to return a \true" value if the year member
of the left operand is greater than the second operand:

// definition of operator function > for (student, int) operands

int operator>(student s, int p) f return s.year > p; g

When the operator > is used with a student object as its left operand, the appropriate version of the
operator function is chosen based on the type of the right operand. Thus given the student variables s1 and
s2, the expression s1 > s2 will result in a call to the �rst function, since the type of the actual argument
s2 matches that of the �rst function's formal argument. The expression s1 > 5 will result in a call to the
second member function, for similar reasons.

Any programmer-de�ned operator function can also be invoked by an explicit function call. In our
example, we de�ned two operator functions with the name operator>; a function call using this name is
equivalent to using the operator >. Thus the function calls operator>(s1, s2) and operator>(s1, 5) are
equivalent to the two operator expressions above.

Operator overloading, like function overloading, does not require any changes to the algebra rules as
it uses only statically determined information. The use of a given operator requires one or more operand
expressions of a given type: this static type information is all that is needed to determine the correct meaning
of the operator. Using a programmer-de�ned operator function corresponds to a function-invocation task,
with the function to invoke determined statically by the types of the actual arguments. For each task T

involving an overloaded operator function name, we determine the best match for the function reference and
assign to Decl(T ) the result of this best match.

5.3 Templates

The template mechanism in C++ allows the programmer to de�ne container classes, classes containing
members whose types are speci�ed outside the class de�nition. A container class de�nes a family of classes
di�ering in the types of some of their members but sharing common structure. Abstract data types such as
stacks and queues can be represented as container classes. For example, the notion of a list de�nes the way
in which list items, or nodes, are linked to one another and methods of manipulating the items but leaves
unde�ned the type of information stored in a node. A family of list types can be de�ned simply by specifying
di�erent values for this type information. A template separates the structure common to all members of the
family from the type information specifying a particular member of the family. A list of type arguments is
supplied �rst, followed by a declaration; the speci�c type information is supplied as arguments, while the
common structure is de�ned in the declaration.

A common example of a container class is the singly-linked list. This abstract data type consists of two
data items and a set of manipulation functions. The data items are the information contained in a node
of the list and a pointer to the next node in the list, and typical manipulation functions include a print
function and a node-addition function. The term singly-linked list denotes a family of data types all sharing

13Of course, the values of the year members is not the only possible basis for a \greater-than" ordering of student objects;
they could just as easily be ordered by the values of their age members, for instance. It may not be clear to a programmer
using the operator> function what the basis for the ordering is. This is a common problem with de�ning operators for classes;
one way of avoiding this confusion would be to de�ne a function rather than an overloaded operator.



19

the above characteristics but di�ering in the type of information stored in each node. We de�ne the common
characteristics within the template's de�nition:

// definition of template "listNode" for singly-linked list node

template <class T>

class listNode

f private:

T data; // data contained in node

listNode* next; // ptr to node following this node in list

public:

void print(); // print data for all nodes in list

void addNode(); g; // add node to list

The only information not speci�ed in the de�nition, the type of T, is supplied as an argument whenever
the template is used. For example, to create a singly-linked list of person objects, we de�ne a variable using
the listNode template:

listNode<person>* personList;

Nodes in this list have data members of type person. A linked list of nodes with data members of type
int can be created in a similar way:

listNode<int>* intList;

A family of functions can also be de�ned by a function de�nition within a template. For instance, we can
create a function template max which, given two objects of the same type as arguments, returns the greater
of the two. The function de�nition within the template speci�es everything except the return type of the
function and the type of its arguments:

// definition of function template "max"

template<class T>

T max (T a, b) f return a > b ? a : b; g

The type information is supplied in a particular invocation of the template; for instance, the func-
tion call max<int>(1, 2) will compare the two int objects and return the int value 2. The function call
max<student>(s1, s2) will compare two student objects, using our de�nition of > in section 5.2, and return
a student value.

The template feature is another language facility that a�ects only the static information associated with a
program. As stated earlier, a template de�nes a family of types; de�ning a template is equivalent to de�ning
each type in the family separately. Thus we may treat types like listNode<int> and listNode<person> as
distinct types and functions like max<int> and max<student> as distinct functions; the fact that they are
generated by the same template has no e�ect on the dynamics of the program. As templates a�ect only
the way in which a program's static information is determined, we do not need to alter our algebra to
accommodate them.

6 Other extensions

C++ introduces several language features which do not �t well into any category. The extensions discussed
here round out the set of C++ extensions.



20 6 OTHER EXTENSIONS

6.1 Constant objects

When an object is created, it may be speci�ed as constant. An object so speci�ed may be given an initial
value, but this value may not be subsequently modi�ed. Constant status is assigned by pre�xing the keyword
const to the object's type. For example, once a constant person object has been created from the de�nition
of variable p1,

const person p1("Leora Watts", 26);

an expression that simply accesses a member of the object, such as p1.age, is valid, but an expression
that would modify the value of a member, such as p1.age++, results in an error at compile time.

Apart from special considerations during compile time, constant objects are treated no di�erently from
nonconstant objects. Expressions and statements that would alter the value of a constant object are simply
rejected during compilation; once a program is compiled, constant and nonconstant objects are equivalent.
Thus our algebra does not need to be changed to accommodate constant objects.

6.2 Inline functions

A function may be de�ned as inline by pre�xing the keyword inline to its declaration; this indicates to
the compiler that it should try to handle calls to this function without using the standard function-call
mechanism. Rather than creating a single memory location for the function and subsequently passing control
to this location each time it is called, the compiler will replace each call to the function with the sequence
of code contained within the function. The function name then acts much like a macro. For example, let us
de�ne our monthlySalary function as inline:

// modified definition of function "monthlySalary" as "inline"

inline int monthlySalary(int yearlySalary, months = 12)

f return yearlySalary / months; g

The compiler will transform an expression like monthlySalary(30000, 9) into an expression not involving
a function call. Replacing the formal arguments of the inline function with actual arguments results in the
expression 30000 / 9, which may then be simpli�ed to 3333.

The e�ects of inlining are limited to compile time; it has no e�ect on the code once it is compiled. Our
algebra applies only to the compiled version of a program, in which all changes to the code made by inlining
are incorporated. Hence this feature does not require any changes to the algebra.

6.3 References

C++ introduces the reference as a means of attaching a name to an object. A reference is declared in a
way similar to the declaration of a variable: a declaration contains a name for the reference and a type
speci�cation followed by the symbol &. A reference declaration must also contain an initializing expression
determining the object that the reference refers to. For instance, given the de�nition of personObject in
section 3.3, we may subsequently de�ne a reference personReference:

// definition of reference "personReference"

person& personReference = personObject;

This creates a reference which returns the value of the object referred to by personObject each time it is
used. Note that the de�nition does not create a new object of type person; personReference simply refers
to the existing object personObject. Thus a modi�cation to personReference's object is a modi�cation to
personObject's object; after the assignment

personReference.age = 22;



6.4 Exception handling 21

the expressions personObject.age and personReference.age will both return the value 22.
Our existing rules for declarations can accommodate references, with one additional stipulation. In a

reference declaration, the reference is assigned the address or lvalue of an object speci�ed in the required
initializer expression. We stipulate that the initializer-expression task associated with a reference via the
function Initializer returns the lvalue of its expression. In addition, we must add rules for reference identi�ers
and members. The use of a reference should return the lvalue or rvalue of the reference's object. This is
determined indirectly by the address stored when the reference is declared. Thus an lvalue access returns
the address stored in the reference, while an rvalue access returns the value of the object stored at this
address. We add the task types reference-identi�er and reference-class-member to the tasks universe, and
the corresponding rules shown in Fig. 7 and Fig. 8.

if TaskType (CurTask) = reference-identi�er then
if ValueMode (CurTask) = lvalue then

if GlobalVar (CurTask) = true then
ReportValue (ObjValue (GlobalVarLoc))

elseif GlobalVar (CurTask) = false then
ReportValue (ObjValue (LocalVarLoc))

endif
elseif ValueMode (CurTask) = rvalue then

if GlobalVar (CurTask) = true then
ReportValue (Deref (ObjValue (GlobalVarLoc)))

elseif GlobalVar (CurTask) = false then
ReportValue (Deref (ObjValue (LocalVarLoc)))

endif
endif
Moveto (NextTask (CurTask))

endif

Figure 7: Transition rule for reference identi�er expressions.

if TaskType (CurTask) = reference-class-member then
if ValueMode (CurTask) = lvalue then

ReportValue (ObjValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask)))
elseif ValueMode (CurTask) = rvalue then

ReportValue (Deref (ObjValue (OnlyValue (CurTask, StackTop) + ConstVal (CurTask))))
endif
Moveto (NextTask (CurTask))

endif

Figure 8: Transition rule for reference class member expressions.

6.4 Exception handling

C++ adds exception handling as a means of recovering from run-time errors. A set of catchers may be
associated with a block of code, a try block. These catchers are themselves blocks of code, intended to be
used as a means of recovering smoothly from run-time errors occurring within the try block. A catcher is



22 6 OTHER EXTENSIONS

invoked by throwing an exception; this results in control being passed to an exception catcher associated
with an enclosing try block. An exception is an object, and di�erent exception catchers are associated with
di�erent object types; thus the catcher invoked for a given exception is determined by matching the exception
object's type and the type associated with a catcher.

If an exception is thrown within a function, control passes to the appropriate catcher de�ned within that
function, if one exists. Otherwise the function stack is \unwound": the function invocation is popped o�
the stack, the return sequence of destructor functions is performed for any objects local to the function,14

control returns to the next function invocation on the stack, and a catcher is searched for there. Unwinding
continues until a catcher with the proper type is found.

To illustrate, we add exception handling to the member functions of our person class. As this class
contains a string member name, there is the possibility of string overow. Consider adding a member function
inputNamewhich accepts a name value from the user and sets the object's name member to this value. A user
could enter a string longer than 25 characters, exceeding the bounds of the name member. In this case, we
would like to issue a warning to the user and truncate the string to the 25-character limit. We �rst add a
new member nameTooLong to serve as an exception class; this is the type of object to be thrown when a string
overow exception is encountered:

// modified definition of class "person,"

// with exception class "nameTooLong"

class person

f private:

char name[25];

int age;

public:

class nameTooLong f g ; // exception class for string overflow

person();

person(const char*, int);

~person();

void inputPerson(); // new member function "inputName"

virtual void virtualPrint();

void nonvirtualPrint(); g;

Next we de�ne setName, which throws a nameTooLong exception if it encounters a string of length greater
than 25:

// definition of function "setName", with exception "nameTooLong"

person::setName(const char* n)

f if (strlen(n) > 25) throw nameTooLong;

strcpy(name, n); g

Finally, we add the inputName function, enclosing the call to the constructor function within a try block
and adding a catcher for a nameTooLong exception:15

// definition of function "inputName," with catcher for exception

person::inputName()

f char n[80];

try f
input(n);

setName(n);g

14See section 4.4 for a discussion of return sequences.
15We assume that the function input reads input from a device and sets the value of its argument to this input value. As

with the function output, we do not de�ne the function explicitly.



6.4 Exception handling 23

catch(nameTooLong)

f output("Warning: truncating name to 25 characters");

n[24] = \0; // set end-of-string marker

setName(n); g g // call "setName" again with truncated string

Exception handling is now in place for the inputPerson function. If the function is invoked and the
user enters an overly long string, the nameTooLong exception will be thrown when the setName function is
invoked. At this point, memory is allocated for a temporary nameTooLong exception object. As the setName

function has no nameTooLong exception catcher, the function terminates and control returns to inputPerson.
This function does contain a nameTooLong catcher, so control passes directly to the catcher; the warning is
displayed, and the name member is truncated and copied into the object.

We add a new rule to be executed when a program is unwinding. Unwinding : ftrue; falseg determines
whether the stack is being unwound. ExceptionTask : tasks returns the throw-statement task that has been
executed. Catcher : tasks � types ! tasks maps each task to the catcher associated with it for the given
exception-object type. If no such catcher is de�ned for a given task, the value of Catcher is undef for that
task and type. Return : tasks ! types maps each task to the �rst task of the return sequence. Finally,
InReturnSeq : Tasks! ftrue; falseg determines whether the given task is part of a return sequence. Our
rule for the unwinding state, shown in Fig. 9, �res if unwinding is underway and a return sequence is not
being executed. It passes control to an exception catcher if one of the appropriate type is de�ned for the
current task and passes control to the return sequence at the end of the function otherwise.

if De�ned (CurTask) and Unwinding = true and not InReturnSeq (CurTask) then
if De�ned (Catcher (CurTask, ValueType (ExceptionTask))) then

Unwinding := false
Moveto (Catcher (CurTask, ValueType (ExceptionTask)))

else
Moveto (Return (CurTask))

ENDIF

Figure 9: Transition rule for unwinding state.

We place an extra constraint on all our other rules so that they do not conict with the unwinding rule.
For each rule of the form \if G then[rule body]" where G is a truth-functional guard condition, we change
the rule to: \if (Unwinding = false orInReturnSeq (CurTask)) and G then[rule body] ."

We add a new task type to handle throw statements and a corresponding tag name throw. In the rule
for such statements, shown in Fig. 10, we check to see whether memory has been allocated for the exception
object; if none has been allocated, we move to a task calling the operator new function. Once memory has
been allocated, we set ExceptionTask to the current task and copy the exception object's value. After the
copying, control passes back to the throw task, at which point Unwinding is set to true.

We also alter our rules to handle expressions involving exception objects. Within a catcher, the exception
thrown can be referred to by an identi�er. The memory location of the exception object is determined by
the throw task that threw the exception. We add a partial function IsException : ftrue; falseg which
determines whether a given identi�er task refers to an exception object. The modi�ed rule for nonreference
identi�ers is shown in Fig. 11; a similar modi�cation is needed for the rule for reference identi�ers.

Finally, as the exception object is eliminated when the catcher terminates, the destructor function for
this object must be called. Thus at the end of the catcher we add a function-invocation task which calls the
destructor of the exception object.



24 6 OTHER EXTENSIONS

if (Unwinding = false or InReturnSeq (CurTask)) andTaskType (CurTask) = throw then
if Unde�ned (OnlyValue (CurTask, StackRoot)) then

ExceptionTask := undef
Moveto (Allocator (CurTask))

elseif Unde�ned (ExceptionTask) then
ExceptionTask := CurTask
DoAssign (OnlyValue (CurTask, StackRoot), RightValue (CurTask, StackTop),

ValueType (CurTask))
else

Unwinding := true
ENDIF

Figure 10: Transition rule for throw statements.

if TaskType (CurTask) = identi�er then
if ValueMode (CurTask) = lvalue then

if GlobalVar (CurTask) = true then
if IsException (CurTask) = true then

ReportValue (ExceptionLoc)
else

ReportValue (GlobalVarLoc)
endif

elseif GlobalVar (CurTask) = false then
ReportValue (LocalVarLoc)

endif
elseifValueMode (CurTask) = rvalue then

if GlobalVar (CurTask) = true then
if IsException (CurTask) = true then

ReportValue (ObjValue (ExceptionLoc))
else

ReportValue (ObjValue (GlobalVarLoc))
endif

elseif GlobalVar (CurTask) = false then
ReportValue (ObjValue (LocalVarLoc))

endif
endif
Moveto (NextTask (CurTask))

endif

Figure 11: Transition rule for identi�er expressions.



25

7 Conclusion

Our algebra as it stands represents all the features of C++ as described in [ES]. Unfortunately, we cannot
claim that our speci�cation constitutes a standard version of C++, as no standard has been established for
the language. While [ES] is the closest thing to a speci�cation currently in print, it is primarily a guide for
language implementors; as such, it mixes \tips" for implementation into the language speci�cation. In some
parts of the text, it is not easy to distinguish the implementation tips from the speci�cation. Nevertheless, we
have done our best to remove implementation-speci�c details from our speci�cation and present the language
in its full generality. As [ES] has been chosen as a \starting point" for an ANSI standard, it seems likely
that our speci�cation will closely approximate any eventual standard.

A Macro de�nitions

We assume the macro de�nitions shown in Fig. 12. Defined and Undefined test whether a given value is
de�ned or unde�ned. The macros GlobalV arLoc, LocalV arLoc and ExceptionLoc are used to determine
the memory locations of global and local variables and exception objects. ObjV alue returns the value of an
object, given the object's memory location. Finally, Deref takes a pointer value and returns the value of
the object pointed to by the pointer.

macroDe�ned(Value): Value 6= undef
macroUnde�ned(Value): Value = undef
macroGlobalVarLoc: OnlyValue (Decl (CurTask), StackRoot)
macroLocalVarLoc: OnlyValue (Decl (CurTask), StackTop)
macroExceptionLoc: OnlyValue (ExceptionTask, StackRoot)
macroObjValue(MemLoc): MemoryValue (MemLoc, ValueType (CurTask))
macroDeref(Value): MemoryValue (Value, PointsToType (CurTask))

Figure 12: Initial macro de�nitions.

References

[ES] Ellis, M. and B. Stroustrup. (1990). The Annotated C++ Reference Manual . Addison-Wesley.

[Gu] Gurevich, Y. (1992). \Evolving Algebras: An Attempt to Discover Semantics," in Current Trends in
Theoretical Computer Science (ed. G. Rozenberg and A. Salomaa), World Scienti�c, 266-292.

[GH] Gurevich, Y. and J. Huggins. (1993). \The Semantics of the C Programming Language," in Lecture
Notes in Computer Science, 702 (ed. E. B�orger et al.), Springer-Verlag, 274-308.

[KR] Kernighan, B. and D. Ritchie. (1988). The C Programming Language. Prentice-Hall.


